answersLogoWhite

0


Best Answer

Is A Series Circuit

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: A circuit with more than one resistor on a single wire is a?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What type of circuit has more than one resistor on a wire?

The answer is a Series circuit.


What happens when more than one resistor is connected to a circuit?

the current flowing in will be low


What is a parallel curcuit?

A parallel circuit is a circuit where there is more than one path of which the flow of current can travel. It is also called a current divider as it divides the current since it splits the path.


Does a parallel circuit have more than 1 resistor?

Parallel circuits normally have more than one resistor. Basically parallel circuits are circuits where the current has more than path to follow. However, there are parallel circuits where there are two switches rather than two resistors.


What is the lifespan of a resistor?

A resistor doesn't deteriorate with age, and has no particular 'life-span', as long as it's used properly. -- A resistor in a box on the shelf, or in a circuit where it stays cool, will last indefinitely. -- A resistor in a circuit where it's forced to dissipate enough power to make it hot may change its resistance value permanently, but will continue to operate. -- A resistor in a circuit where it's forced to dissipate even more than that, to a ridiculous extreme, may melt or explode. When that happens, it's the end of the resistor's life-span. But it wasn't the resistor's fault.


Why does electrical current flow along a single path in a series circuit and more than one path in a parallel circuit?

Because there is only a single path in series circuit and many paths in parallel circuit.


Is total resistance less than smallest resistor in a series parallel circuit?

no


What happen if resistors has high power?

The power rating of the resistor only tells the amount of power it's able to dissipate without overheating, melting, or exploding. The amount of power that a resistor dissipates is determined by its resistance and the current through it (or voltage across it). If you put a small resistor at a place in the circuit where it must dissipate more power than it's rated for, then it'll overheat and possibly fail. If you put a high power resistor at a place in the circuit where it dissipates much less power than it's rated for, then nothing happens at all. It simply takes up more space on the board than was necessary, because it's bigger than what was needed there, and you spent more money than you needed to spend for the kind of resistor that you needed at that place in the circuit.


How do you define zero ohm resistor?

A zero ohm resistor is a piece of wire with a resistor body. It is essentially a jumper. It is useful when a jumper is need on a printed circuit board that is assembled by automated machinery, because the automated machinery can handle resistor insertion far easier than a jumper wire. The color coding on a zero ohm resistor is one single black band.


What is the difference between a normal resistor and a bleeder resistor?

A resistor is a resistor. Plain and simple. By Ohm's Law, resistance in ohms is voltage in volts divided by current in amperes. The difference lies in application, not in the resistor itself. A normal resistor will introduce a voltage drop or current that makes some effect in the circuit, based on some design criteria. A bleeder resistor, on the other hand does not really affect the circuit - it is only there to "bleed off", or discharge, capacitors when the power is turned off. Consequently, a bleeder resistor will typically have a higher resistance than a normal resistor but, again, the issue is circuit design, not the resistor itself.


Which uses more energy parallel circuit or a series circuit?

That depends. For example, if the circuit is consisted of two resistors, 2 ohms each, the equivalent resistance (Req) of these two resistors in series is 4 ohms, and the Req of these two resistors in parallel is 1 ohm. If the same voltage is applied, say 4 V.power consumed in a resistance = V2/R.The parallel circuit: Power = 4 * 4 / 1 = 16 [W].The series circuit: Power = 4 * 4 / 4 = 4 [W].With everything else the same, a parallel circuit consumes more energy than a series circuit.Note that circuits of only simple resistors are discussed. You need to consider each circuit on its merit.================================AnswerIt depends. In both cases, the total energy expended will be the sum of the energies expended by each individual load.


Will a circuit work if the resistance of the fixed resistor is larger than the resistance value of the thermistor?

In order to answer that, one would need to know what the circuit is designed to do (so that he would know how to tell when the circuit is "working"), and would also need to see the schematic diagram, in order to know exactly how the fixed resistor and the thermistor are configured in the circuit, and what other components are involved. Consider . . . If I came up to you on the street, or even for that matter in an Engineering lab, and I said to you "I've got a circuit with a coil and a resistor in it. Will it work if the impedance of the coil is greater than the resistance of the resistor ?", you would most certainly find yourself at a loss, just as I do when I read your question.