answersLogoWhite

0


Best Answer

the voltage which is given for creating magnetic field in a generator is known as excitation voltage.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Generator excitation voltage
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

If the excitation of generator changes what happens to the terminal voltage?

By Decreasing the excitation voltage the terminal voltage will decrease and similarly by increasing the excitation voltages the terminal voltage will also increases.


What effect if excitation voltage raise on load?

The generator terminal voltage will increase.


What is the excitation system in a generator used for?

The excitation system is used to control the excitation of the rotating field in the armature. By increasing the armature current, it in turn increases the magnetic flux in the armature coil. This has the effect of increasing the voltage output of the generator. By lowering the armature current this in turn lowers the generator output voltage. The generator's voltage regulator automatically adjusts the output voltage continuously as the applied load on the generator changes.


What happens at the rated value of the voltage of the generator?

The rated voltage of a generator decreases due to many causes such as armature reaction, overloading of the generator and AVR failure/ weak excitation voltage.


How variable speed generator works and its specification?

First you have to understand how a generator works. Basically the excitation voltage is what varies according to generator output. Usually on a power source that has a inconsistant rpm, the excitation voltage will vary similar to a govenor in order to hold the generator output constant.


What voltage is generally used for field excitation?

For a small generator like the 125 Watt Alternator/Generator in your car, 12 Volts at a couple Amps. For a large 1,200,000,000 Power Plant Generator typical excitation is 600V at 8000A.


What is the excitation of the generator?

The rotor must have a magnetic field in order to generator voltage in stator winding. The exciter circuit generates this DC filed in the rotor.


Where does the voltage that is necessary for field excitation on the rotor originates from?

The excitation current is provided by a small self-excited pilot generator, attached to the same shaft as the alternator's rotor.


What is excitation and why is it needed for start up in an AC generator?

An alternator is just another name for a synchronous generator. Excitation is needed to create a magnetic field in the rotor. When to rotor is spun with excitation the magnetic field will cut through the stator field and produce an AC voltage in the stator field. In terms of an alternator with built in rectifier the stators AC voltage in the rectified to DC. The strength of excitation will determine the alternators output voltage. The AVR Automatic Voltage Regulator built into almost every alternator controls field current to maintain a constant output voltage.


Why 3 phase diesel generators run undervoltage?

The excitation voltage is too low. Turn the field voltage "pot" to raise the field voltage while watching the output generator voltage.


When you rotate the handle of the electric generator faster does it deliver more less or the same voltage?

The speed of a generator only effects the frequency. Most generators operate at 1800 RPM. The output voltage is controlled by varying the field excitation voltage.


Why terminal voltage of the self-excited shunt generator lower than that of the separately excited shunt generato?

Some generators are self excited; this means their terminal voltage is fed back to the excitation system to supply power to the rotor of the generator (which makes it into an electromagnet); the more power that is fed back, the stronger the electromagnet becomes, which makes it harder to turn the generator, which causes the generator to push out more power (simplified, really quick version). If there is a fault electrically near the terminal of a self excited generator, the terminal voltage will sage to near zero; this means the voltage supplied to the excitation system will drop by the same percentage (say the terminal voltage is 30% of what it should be, then the maximum supplied voltage to the excitation system drops to 30% of what it normally is, since P = V*I). Since the input power is less, the output of the generator will decrease (current will decrease). The terminal voltage is determined by the impedance between the generator and the fault such that V = I*Z; As I decreases, V will also continue to fall, causing the terminal voltage to sag even more. A non-self excited generator gets its' excitation power from the grid, specifically from a location that is electrically separated from its' terminal voltage. If the terminal voltage sagged to 30% (same fault location as above example), the excitation system voltage may be impacted slightly (say 2%) so the excitation system power is near maximum (98% for this example). Since the excitation system is much farther removed from the terminal voltage, it is not dependent upon it, thus the terminal voltage will not continue to sag as with a self excited system.