answersLogoWhite

0


Best Answer

An example of a real life exponential function in electronics is the voltage across a capacitor or inductor when excited through a resistor.

Another example is the amplitude as a function of frequency of a signal passing through a filter, when past the -3db point.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is an Example of a real life exponential function in electronics?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Tha half life of an atom is 50 years what is a possible exponential function for this decay?

sf


Is an exponential decay function represent a quantity that has a constant halving time?

A quantity is said to be subject to exponential decay if it decreases at a rate proportional to its value. The time required for the decaying quantity to fall to one half of its initial value.Radioactive decay is a good example where the half life is constant over the entire decay time.In non-exponential decay, half life is not constant.


How can you use logarithmic and exponential equations and properties to solve half-life and logistic growth scenarios?

For an exponential function: General equation of exponential decay is A(t)=A0e^-at The definition of a half-life is A(t)/A0=0.5, therefore: 0.5 = e^-at ln(0.5)=-at t= -ln(0.5)/a For exponential growth: A(t)=A0e^at Find out an expression to relate A(t) and A0 and you solve as above


What is a real life example of a power function?

curent


What is an example of a real life parent linear function?

y=x2


The half-life of a certain radioactive material is 75 days An initial amount of the material has a mass of 381 kg Write an exponential function that models the decay of this material Find how much?

The generalized exponential half-life equation is ... AT = A0 2(-T/H) ... where A0 is the initial activity, AT is the final activity at time T, and H is the half-life in units of time T. Example using the specific question, for an elapsed time of 50 days, is ... A50 = (381) 2(-50/75) = 240


What are the applications of logarithmic and exponential functions in real life?

I am both a Mechanical and an Electrical engineer ( aka use math in real life every day) and I work every day with systems described by exponential or logarithmic functions.Just to name a few:Charging or discharging of a capacitorAny LRC circuit (or any combination thereof)Any SMD system (or any combination thereof)radioactive decayalgorithmic efficiencyIn other words, if you want to describe a real life you will probably encounter some exponential function. This comes from the fact that the solution to differential equations ( which govern most of the universe) generally contain an exponential term.


What is a real life example of the sine function?

A real life example of the sine function could be a ferris wheel. People board the ride at the ground (sinusoidal axis) and the highest and lowest heights you reach on the ride would be the amplitudes of the graph.


How is the half-life of a radioactive isotope found?

The half life of actinium (for the natural isotope 227Ac) is 21,773 years.


What is an example of a real life cubic function?

A real world example of a cubic function might be the change in volume of a cube or sphere, depending on the change in the dimensions of a side or radius, respectively.


What is a real life situation of exponential growth related to biology?

One example of a real life situation you will need to know how to use exponential numbers is if you go to the doctor and need to know your blood count. The numbers of the red and white cells would be expressed in the form of scientific notation.


In chemistry what is a half life?

The half-life of a quantity whose value decreases with time is the interval required for the quantity to decay to half of its initial value. The concept originated in describing how long it takes atoms to undergo radioactive decay but also applies in a wide variety of other situations.Half-lives are very often used to describe quantities undergoing exponential decay-for example radioactive decay-where the half-life is constant over the whole life of the decay, and is a characteristic unit (a natural unit of scale) for the exponential decay equation. However, a half-life can also be defined for non-exponential decay processes, although in these cases the half-life varies throughout the decay process. The converse for exponential growth is the doubling time.