answersLogoWhite

0


Best Answer

Terminal velocity is the velocity where the force of gravity balances the drag of the air stream flow past the object. At terminal velocity, the object's acceleration due to gravity becomes zero, and the object begins to fall at a constant velocity. In a vacuum, however, there is no air - and thus no drag- so the object continues to accelerate.

User Avatar

Wiki User

8y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

8y ago

In such a case, there is no such thing as "terminal velocity". Terminal velocity means there is a balance between the gravitational force (which tends to speed an object up) and the force of friction, for example air resistance (which tends to slow the object down). If there is no friction, there can be no such balance.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why can a object falling in a vacuum never reach terminal velocity?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

How fast is terminal velocity for a penny if it is in a vacuum?

If the penny is in a vaccum, the penny has no terminal velocity because verminal velocity is when the resistance against the falling penny is equal to the force of gravity. So if it is in a vaccum, it has no forces resisting the fall, and it has no terminal velocity.


Will an object dropped on the moon reach a terminal velocity?

That varies, depending on the object. A massive object may take a long time to reach terminal velocity; a less massive object will reach terminal velocity faster. It basically depends on the object's mass, size, and shape.


What are two ways of increasing the terminal velocity of a falling object?

I'm reluctant to answer because the wording of the question suggests the person asking is looking for answers that meet undefined constraints. One way to increase the terminal velocity of a falling object is to drop it in a vacuum. Another is to drop it in a atmosphere of hydrogen. . 1. increase the mass, without increasing the drag coefficient. 2. Decrease the drag coefficient, without decreasing the mass.


What is the maximum speed a person can reach falling from a plane?

I think it depends on the distance it is falling from. The longer it falls the more momentum it gains. _________ The idea is called 'terminal velocity'. For a skydiver in the typical flat open position (to maximize drag) the terminal velocity is about 195 mph. Where objects can fall in vacuum, there is no termal velocity, except for the moment of impact with the body responsible for the gravitational field, at which time velocity and acceleration both 'terminate'. But on earth, the atmosphere causes drag, and at some point a falling object may accelerate enough so that atmospheric drag counteracts acceleration. Terminal velocity will be different from object to object, because of the characteristics of the object that would increase or minimize drag. In the head-down position, competition skydivers can reach speeds higher than 600 mph.


Is terminal velocity the same speed for any weight?

Terminal velocity for a feather will be considerably lower than the terminal velocity of a bullet. The size and shape of the object will play an important role. While objects dropped from a given height in a vacuum will fall to earth at the same velocity, the resistance caused by atmosphere will be different for different objects.

Related questions

Why can't a object falling in a vacuum ever reach terminal velocity?

There is no drag in a vacuum to act against the acceleration.


The greatest velocity a falling object reaches?

The greatest velocity that a falling object can achieve is termed, terminal velocity. The equation for terminal velocity is equal to the square root of (2mg / (air density * projected area * drag coefficient))


How fast is terminal velocity for a penny if it is in a vacuum?

If the penny is in a vaccum, the penny has no terminal velocity because verminal velocity is when the resistance against the falling penny is equal to the force of gravity. So if it is in a vaccum, it has no forces resisting the fall, and it has no terminal velocity.


Does the velocity of an object increase when its falling freely in a vacuum?

It accelerates at a higher rate


Will an object dropped on the moon reach a terminal velocity?

That varies, depending on the object. A massive object may take a long time to reach terminal velocity; a less massive object will reach terminal velocity faster. It basically depends on the object's mass, size, and shape.


What are two ways of increasing the terminal velocity of a falling object?

I'm reluctant to answer because the wording of the question suggests the person asking is looking for answers that meet undefined constraints. One way to increase the terminal velocity of a falling object is to drop it in a vacuum. Another is to drop it in a atmosphere of hydrogen. . 1. increase the mass, without increasing the drag coefficient. 2. Decrease the drag coefficient, without decreasing the mass.


What is the maximum speed a person can reach falling from a plane?

I think it depends on the distance it is falling from. The longer it falls the more momentum it gains. _________ The idea is called 'terminal velocity'. For a skydiver in the typical flat open position (to maximize drag) the terminal velocity is about 195 mph. Where objects can fall in vacuum, there is no termal velocity, except for the moment of impact with the body responsible for the gravitational field, at which time velocity and acceleration both 'terminate'. But on earth, the atmosphere causes drag, and at some point a falling object may accelerate enough so that atmospheric drag counteracts acceleration. Terminal velocity will be different from object to object, because of the characteristics of the object that would increase or minimize drag. In the head-down position, competition skydivers can reach speeds higher than 600 mph.


Is terminal velocity the same speed for any weight?

Terminal velocity for a feather will be considerably lower than the terminal velocity of a bullet. The size and shape of the object will play an important role. While objects dropped from a given height in a vacuum will fall to earth at the same velocity, the resistance caused by atmosphere will be different for different objects.


Is it true that the thing that affects how fast it falls is the objects surface area?

Surface area is ONE thing that can affect how fast an object falls. Two forces determine how fast an object falls - the force of gravity and the opposing drag on the object from the medium it is falling through. In the case of an object falling in a vacuum, there is no drag so the object falls strictly according to the law of gravity. If an object is dropped through a fluid such as air or water, it can reach a terminal velocity where the force of gravity is exactly counterbalanced by the opposing drag on the object. In this case acceleration ceases - although motion does not. In other words, the object continues to fall, but it doesn't speed up. Drag force is a function of object velocity, viscosity of the fluid it is falling through, the surface area of the falling object, the surface roughness of the falling object, and the geometry of the falling object (spheres usually have less drag than cubes for example).


What increases As an object falls freely in a vacuum?

the object's falling speed


Where on earth can a hammer and feather drop at the same speed?

Inside a safe dropped from a plane.If there were a very good vacuum to drop them in, it would be close. The air resistance of a feather limits its falling velocity more than the resistance on the hammer. When the drag caused by friction equals the weight of the object, it cannot continue to accelerate and falls at a speed called its terminal velocity.


Does air resistance decrease as you move faster?

As a falling object accelerates through air, its speed increases and air resistance increases. While gravity pulls the object down, we find that air resistance is trying to limit the object's speed. Air resistance reduces the acceleration of a falling object. It would accelerate faster if it was falling in a vacuum.