answersLogoWhite

0


Best Answer

nitrogen cycle is a cycle where nitrogen is used and replenish over and over again.

The processes of the nitrogen cycle

Nitrogen is present in the environment in a wide variety of chemical forms including organic nitrogen, ammonium (NH4+), nitrite (NO2-), nitrate (NO3-), nitrous oxide (N2O), nitric oxide (NO) or inorganic nitrogen gas (N2). Organic nitrogen may be in the form of a living organism, humus or in the intermediate products of organic matter decomposition. The processes of the nitrogen cycle transform nitrogen from one form to another. Many of those processes are carried out by microbes, either in their effort to harvest energy or to accumulate nitrogen in a form needed for their growth. The diagram above shows how these processes fit together to form the nitrogen cycle.

[edit]Nitrogen fixation

Main article: Nitrogen fixation

Atmospheric nitrogen must be processed, or "fixed" (see page on nitrogen fixation), to be used by plants. Some fixation occurs in lightning strikes, but most fixation is done by free-living or symbiotic bacteria. These bacteria have the nitrogenase enzyme that combines gaseous nitrogen with hydrogen to produce ammonia, which is then further converted by the bacteria to make their own organic compounds. Most biological nitrogen fixation occurs by the activity of Mo-nitrogenase, found in a wide variety of bacteria and some Archaea. Mo-nitrogenase is a complex two component enzyme that has multiple metal-containing prosthetic groups.[7] Some nitrogen fixing bacteria, such as Rhizobium, live in the root nodules of legumes (such as peas or beans). Here they form a mutualistic relationship with the plant, producing ammonia in exchange for carbohydrates. Nutrient-poor soils can be planted with legumes to enrich them with nitrogen. A few other plants can form such symbioses. Today, about 30% of the total fixed nitrogen is manufactured in ammonia chemical plants.[8]

[edit]Conversion of N2

The conversion of nitrogen (N2) from the atmosphere into a form readily available to plants and hence to animals is an important step in the nitrogen cycle, which distributes the supply of this essential nutrient. There are four ways to convert N2 (atmospheric nitrogen gas) into more chemically reactive forms:[5]

Biological fixation: some symbiotic bacteria (most often associated with leguminous plants) and some free-living bacteria are able to fix nitrogen as organic nitrogen. An example of mutualistic nitrogen fixing bacteria are the Rhizobium bacteria, which live in legume root nodules. These species are diazotrophs. An example of the free-living bacteria is Azotobacter.

Industrial N-fixation: Under great pressure, at a temperature of 600 C, and with the use of an iron catalyst, hydrogen (usually derived from natural gas or petroleum) and atmospheric nitrogen can be combined to form ammonia (NH3) in the Haber-Bosch process which is used to make fertilizer and explosives.

Combustion of fossil fuels: automobile engines and thermal power plants, which release various nitrogen oxides (NOx).

Other processes: In addition, the formation of NO from N2 and O2 due to photons and especially lightning, can fix nitrogen.

[edit]Assimilation

Main article: Assimilation (Biology)

Plants take nitrogen from the soil, by absorption through their roots in the form of either nitrate ions or ammonium ions. All nitrogen obtained by animals can be traced back to the eating of plants at some stage of the food chain.

Plants can absorb nitrate or ammonium ions from the soil via their root hairs. If nitrate is absorbed, it is first reduced to nitrite ions and then ammonium ions for incorporation into amino acids, nucleic acids, and chlorophyll.[5] In plants that have a mutualistic relationship with rhizobia, some nitrogen is assimilated in the form of ammonium ions directly from the nodules. Animals, fungi, and other heterotrophic organisms obtain nitrogen by ingestion of amino acids, nucleotides and other small organic molecules.

[edit]Ammonification

When a plant or animal dies, or an animal expels waste, the initial form of nitrogen is organic. Bacteria, or fungi in some cases, convert the organic nitrogen within the remains back into ammonium (NH4+), a process called ammonification or mineralization. Enzymes Involved:

GS: Gln Synthetase (Cytosolic & PLastid)

GOGAT: Glu 2-oxoglutarate aminotransferase (Ferredoxin & NADH dependent)

GDH: Glu Dehydrogenase:

Minor Role in ammonium assimilation.

Important in amino acid catabolism.

[edit]Nitrification

Main article: Nitrification

The conversion of ammonium to nitrate is performed primarily by soil-living bacteria and other nitrifying bacteria. In the primary stage of nitrification, the oxidation of ammonium (NH4+) is performed by bacteria such as the Nitrosomonas species, which converts ammonia to nitrites (NO2-). Other bacterial species, such as the Nitrobacter, are responsible for the oxidation of the nitrites into nitrates (NO3-).[5] It is important for the nitrites to be converted to nitrates because accumulated nitrites are toxic to plant life.

Due to their very high solubility, and because soils are largely unable to retain anions, nitrates can enter groundwater. Elevated nitrate in groundwater is a concern for drinking water use because nitrate can interfere with blood-oxygen levels in infants and cause methemoglobinemia or blue-baby syndrome.[9] [10] Where groundwater recharges stream flow, nitrate-enriched groundwater can contribute to eutrophication, a process that leads to high algal, especially blue-green algal populations. While not directly toxic to fish life, like ammonia, nitrate can have indirect effects on fish if it contributes to this eutrophication. Nitrogen has contributed to severe eutrophication problems in some water bodies. Since 2006, the application of nitrogen fertilizer has been increasingly controlled in Britain and the United States. This is occurring along the same lines as control of phosphorus fertilizer, restriction of which is normally considered essential to the recovery of eutrophied waterbodies.

[edit]Denitrification

Main article: Denitrification

Denitrification is the reduction of nitrates back into the largely inert nitrogen gas (N2), completing the nitrogen cycle. This process is performed by bacterial species such as Pseudomonas and Clostridium in anaerobic conditions.[5] They use the nitrate as an electron acceptor in the place of oxygen during respiration. These facultatively anaerobic bacteria can also live in aerobic conditions.

[edit]Anaerobic ammonium oxidation

Main article: Anammox

In this biological process, nitrite and ammonium are converted directly into elemental nitrogen (N2) gas. This process makes up a major proportion of elemental nitrogen conversion in the oceans.

[edit]Marine nitrogen cycle

A schematic representing the Marine Nitrogen Cycle

The nitrogen cycle is an important process in the ocean as well. While the overall cycle is similar, there are different players and modes of transfer for nitrogen in the ocean. Nitrogen enters the water through precipitation, runoff, or as N2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N2 so it must undergo nitrogen fixation which is performed predominately by cyanobacteria.[11] Without supplies of fixed nitrogen entering the marine cycle the fixed nitrogen would be used up in about 2000 years.[12] Phytoplankton need nitrogen in biologically available forms for the initial synthesis of organic matter. Ammonia and urea are released into the water by excretion from plankton. Nitrogen sources are removed from the euphotic zone by the downward movement of the organic matter. This can occur from sinking of phytoplankton, vertical mixing, or sinking of waste of vertical migrators. The sinking results in ammonia being introduced at lower depths below the euphotic zone. Bacteria are able to convert ammonia to nitrite and nitrate but they are inhibited by light so this must occur below the euphotic zone.[13] Ammonification or Mineralization is performed by bacteria to convert the ammonia to ammonium. Nitrification can then occur to convert the ammonium to nitrite and nitrate.[14] Nitrate can be returned to the euphotic zone by vertical mixing and upwelling where it can be taken up by phytoplankton to continue the cycle. N2 can be returned to the atmosphere through denitrification.

NH4+ is thought to be the preferred source of fixed nitrogen for phytoplankton because its assimilation does not involve a redox reaction and therefore requires little energy. However NO3 is more abundant so most phytoplankton have adapted to have the enzymes necessary to undertake this reduction (nitrate reductase). There are a few notable and well-known exceptions that include Prochlorococcus and some Synechococcus.[12] These species can only take up nitrogen as NH4+.

The nutrients in the ocean are not uniformly distributed. Areas of upwelling provide supplies of nitrogen from below the euphotic zone. Coastal zones provide nitrogen from runoff and upwelling occurs readily along the coast. However, the rate at which nitrogen can be taken up by phytoplankton is decreased in oligotrophic waters all year-round and temperate water in the summer resulting in lower primary production.[15] The distribution of the different forms of nitrogen varies throughout the oceans as well.

Nitrate is depleted in near-surface water except in upwelling regions. Coastal upwelling regions usually have high nitrate and chlorophyll levels as a result of the increased production. However, there are regions of high surface nitrate but low chlorophyll that are referred to as HNLC (high nitrogen, low chlorophyll) regions. As of now the best explanation for HNLC regions relates to iron limitation in the ocean. In recent years iron has become an important player when discussing ocean dynamics and nutrient cycles. The input of iron varies by region and is delivered to the ocean by dust (from dust storms) and is leached out of rocks. Iron is under consideration as the true limiting element in the ocean.

NH4+ and NO2 show a maximum concentration at 50-80 m (lower end of the euphotic zone) with decreasing concentration below that depth. This distribution can be accounted for by the fact that NO2 and NH4+ are intermediate species. They are both rapidly produced and consumed through the water column.[12] The amount of NH4+ in the ocean is about 3 orders of magnitude less than nitrate.[12] Between NH4+, NO2, and NO3, NO2 has the fastest turnover rate. It can be produced during NO3 assimilation, nitrification, and denitrification; however, it is immediately consumed again.

[edit]New vs. regenerated nitrogen

Nitrogen entering the euphotic zone is referred to as new nitrogen because it is newly arrived from outside the productive layer. [11] The new nitrogen can come from below the euphotic zone or from outside sources. Outside sources are considered to be upwelling from deep water or by nitrogen fixation. If the organic matter is eaten, respired, delivered to the water as ammonia, and re-incorporated into organic matter by phytoplankton it is considered recycled/regenerated production.

New production is an important component of the marine environment. One reason is that only continual input of new nitrogen can determine the total capacity of the ocean to produce a sustainable fish harvest.[16] Harvesting fish from regenerated nitrogen areas will lead to a decrease in nitrogen and therefore a decrease in primary production. This will have a negative effect on the system. However, if fish are harvested from areas of new nitrogen the nitrogen will be replenished.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does nitrogen come back to earth?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How does dead organism return inorganic nitrogen back to earth?

How do dead organism return inorganic back to the earth


How does nitrogen put back into the earth?

Through lightning strikes or manure


Will dinoaurs come back to earth?

Sadly, no. Dinosaurs are distinct so they will not come back to earth.


Why do ghosts come back on earth?

Ghosts come back to earth to visit their house or to do things that they didnt finish. Ghosts probably come back to visit someone that they loved.


Will curiosity come back to earth?

no


How do you get nitrogen on earth?

Nitrogen is fixed


When did Armstrong come back back to Earth?

July 21,1969


Where is most of the nitrogen on earth found?

78% of the air in Earth's atmosphere is nitrogen. Also, all plants have nitrogen.


How does water pollution affect the nitrogen cycle?

Water pollution affects the nitrogen cycle the least. The nitrogen cycle is the cycle of nitrogen as it enters earth, becomes fixed, and leaves earth, back to the atmosphere. The only way that water pollution can affect the nitrogen cycle is if there is too much trash in one area of a body of water, thus clogging the surface and not allowing algae to absorb the nitrogen. It could also clog the surface and not allow denitrifying bacteria in waterlogged soil to release the nitrogen back into the atmosphere.


When earth ends will it come back?

the earth isn't really going to 'end.' Jesus is going to come back and take his believers to Heaven and make a new heaven and a new earth


Is nitrogen the main part of earth's atmosphere?

Yes, Earth's atmosphere is about 78% nitrogen.


Is most of the earth's atmosphere nitrogen?

Yes Earth's atmosphere comprises 78% Nitrogen.