Quantcast
answersLogoWhite
notificationBell

Top Answer
User Avatar
Wiki User
Answered 2015-11-17 22:14:30

It really depends on the type of equation. Sometimes you can know, from experience with similar equations. But in many cases, you have to actually do the work of trying to solve the equation.

001
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
๐Ÿ˜‚
0
User Avatar

Your Answer

Still Have Questions?

Related Questions

How can you tell how many solutions a quadratic equation will have without solving it?

A quadratic equation can have a maximum of 2 solutions. If the discriminant (b2-4ac) turns out to be less than 0, the equation will have no real roots. If the Discriminant is equal to 0, it will have equal roots. But, if the discriminant turns out to be more than 0,then the equation will have unequal and real roots.


Without solving the equation determine the nature of the roots of 2x 2 plus 3x plus 9 0?

With a negative discriminant, the two solutions are imaginary.


Why is it necessary to check for extraneous solutions in radical equations?

1) When solving radical equations, it is often convenient to square both sides of the equation. 2) When doing this, extraneous solutions may be introduced - the new equation may have solutions that are not solutions of the original equation. Here is a simple example (without radicals): The equation x = 5 has exactly one solution (if you replace x with 5, the equation is true, for other values, it isn't). If you square both sides, you get: x2 = 25 which also has the solution x = 5. However, it also has the extraneous solution x = -5, which is not a solution to the original equation.


How many solutions are there to the equation x3 - 7 0?

None because without an equality sign the given expression is not an equation and so therefore no solutions are possible.


How can you tell if an equation has at most one solution without solving it?

You can be certain if the equation is linear, that is, of the form ax + b = 0 where a and b are constants.


How do you know when an Equation has an infinity solutions without solving the equation?

You can't really know that in all cases. But with some practice in working with equations, you'll start to notice certain patterns. For example, you'll know that certain functions are periodic, and that an equation such as: sin(x) = 0 have infinitely many solutions, due to the periodicity of the function. This one is easy; we can make some small changes: sin(2x + 3) = 0.5 Here it isn't as easy to guess the exact solutions of the equation, but due to our knowledge of the periodicity of the sine function, we can assume that it has infinitely many solutions. Another example: a single equation with two or more variables normally has infinitely many solutions, for example: y = 3x + 2


Does an equation has a solution?

Yes and sometimes it can have more than one solution.


How many solutions are there to the equation -46 3x plus 7x?

None because without an equal sign it's not an equation


How many real solutions are there to the equation x2 3x 10 0?

None because without an equality sign it cannot be an equation


How many solutions are there to the equation 12x plus 6 5x?

None because without an equality sign the given expression is not an equation.


How many solutions are there to the equation below 17x - 8 3x plus 16?

Without an equality sign the given terms can't be considered to be an equation and so therefore no solutions are possible.


What are the solutions to the equation 3(x-4)(x 5)0?

Without an equality sign the given expression can't be considered to be an equation and so therefore there are no solutions.


What are the solutions to the equation 4x2 3x 10?

There are none because without an equality sign it can not be considered to be an equation and the + or - values of 3x and 10 are not given


What reasoning and explanations can be used when solving radical equations?

The basic method is the same as for other types of equations: you need to isolate the variable ("x", or whatever variable you need to solve for). In the case of radical equations, it often helps to square both sides of the equation, to get rid of the radical. You may need to rearrange the equation before squaring. It is important to note that when you do this (square both sides), the new equation may have solutions which are NOT part of the original equation. Such solutions are known as "extraneous" solutions. Here is a simple example (without radicals): x = 5 (has one solution, namely, 5) Squaring both sides: x squared = 25 (has two solutions, namely 5, and -5). To protect against this situation, make sure you check each "solution" of the modified equation against the original equation, and reject the solutions that don't satisfy it.


Which equation has the same solutions as 8x2 37x-150?

None because without an equality sign the given terms can't be considered to be an equation.


How many and what type of solutions does the equation have 4x2 2 10x?

None because without an equality sign the given terms can't be considered to be an equation.


What are quantitative problem solving skills?

quantitative problem solving skills means there is no single best answer that may be available. Without further information and context, there is no way to determine whether both solutions or all solutions are valid for that particular problem. ex--- x=4 and x=-4 are both solutions for x^2= 16.


What are the solutions of the quadratic equation 3x2 - x 11?

Without an equality sign and not knowing the plus or minus value of 11 it can't be considered to be an equation.


How many solutions does the equation X 2 plus 7X plus 12 have?

None because without an equal it is not an equation. But if it was in the form of x2+7x+12 = 0 then it would have 2 solutions which are x = -3 and x = -4


How many solutions does this equation have 6x-8-4x-12?

None because without an equality sign the terms of the given expression is not an equation.


What is the fifth step in solving this equation by completing the square 9x2-6x 80?

Without the inclusion of an equality sign and not knowing the plus or minus value of 80 the expression can not be considered to be an equation.But if you meant: 9x2-6x-80 = 0 then (3x+8)(3x-10) = 0 when factoredAnd its solutions are: x = -8/3 and x = 10/3


What does no solution in algebra mean?

An equation can have zero solutions, one solution, two solutions, or many solutions. A solution is any number that, when replaced into the equation, will give an equality. An example of an equation without a solution is x = x + 1. No matter what number you use for "x", the right part will always be one more than the left part. Therefore, the equation has no solution. (Also, if you subtract "x" from each side, you get the equation 0 = 1, which is obviously false.)


How many solutions are there in the eqaution 14510x-8x?

None because without an equality sign it can't be considered to be an equation.


How many solutions are there to the equation 8x plus 47 8 x plus 5?

None because without an equality sign the given terms can't be considered to be an equation


How would you know that your equation has infinite solutions without actually solving it?

In some cases, a knowledge of the function in question helps. For example, when you have multiple equations, if you have more equations than variables you will usually have infinite solutions. Another example is that certain functions are known to be periodic, for instance the trigonometric functions - so an equation such as sin(x) = 1/2 may have infinite solution, due to the periodicity.


Still have questions?

Trending Questions
Unanswered Questions
What plug replaces l8rtc? Asked By Wiki User
Who are perceptual region's? Asked By Wiki User