Yes, the forward voltage drop of a Schottky diode is usually more than the forward voltage drop of a tunnel diode.
A Schottky diode voltage drop is between approximately 0.15 to 0.45 volt.
The interesting thing that makes a tunnel diode different from other diodes is its "negative resistance region" with a "peak current" around 0.06 volt and a "valley current" around 0.30 volt.
The diode that has a negative resistance region in its voltage-current curve.
The schottky diode is based on a metal-semiconductor junction, called a schottky barrier, that results in lower forward voltage and vastly decreased switching time. While an ordinary silicon diode has a forward voltage around 0.7 volts, with a germanium diode around 0.3 volts, the schottky can be as low as 0.15 volts. The switching time can be in the tens of picoseconds range, compared to hundreds of nanoseconds. The downside is limited reverse voltage rating and poor reverse voltage leakage, which increases with temperature, causing potential thermal runaway.
The schottky diode is based on a metal-semiconductor junction, called a schottky barrier, that results in lower forward voltage and vastly decreased switching time. While an ordinary silicon diode has a forward voltage around 0.7 volts, with a germanium diode around 0.3 volts, the schottky can be as low as 0.15 volts. The switching time can be in the tens of picoseconds range, compared to hundreds of nanoseconds. The downside is limited reverse voltage rating and poor reverse voltage leakage, which increases with temperature, causing potential thermal runaway.
There is no exact substitute for a germanium diode, except another germanium diode. However if the only concern is to get a lower forward voltage drop than that of a silicon diode (0.7V), then a schottky barrier diode may be a suitable replacement as its forward voltage drop (<0.1V) is even lower than that of a germanium diode (0.2V).
Difference between Schottky Barrier Diode and P-N Junction Diode is as following...Schottky Diode1) Usually using the aluminum metal which is trivalent element. 2) Depletion layer is thinner than the p-n junction diode.3) Forward threshold voltage is smaller than p-n junction diode(0.1V).4) The junction capacitance is lower than p-n junction diode.P-N Junction Diode1) Trivalent impurity is added to the pure silicon structure. 2) Depletion layer is wider than Schottky diode.3) Forward threshold voltage is higher than Schottky diode(0.6V)4) The junction capacitance is higher than Schottky diode.
there is no forward breakdown voltage for any diode
A Shockley diode is a primitive diode identical to a thyristor with it's gate left disconnected. A Schottky diode is similar to a normal avalanche diode except that it's forward voltage is quite low, and it's switching speed is very high.
A thin junction diode which exhibits negative resistance under low forward bias condition is known as tunnel diode.
A thin junction diode which exhibits negative resistance under low forward bias condition is known as tunnel diode.
v peak = v rms times square root (2) Note: A junction voltage of 0.3V is atypical. Normally a silicon diode has a forward voltage between 0.6 volts to 1.4V depending on current. Are you sure about the forward voltage? Perhaps you are talking about germanium or schottky diodes?
Schottky Diode
The silicon diode (unless its a Schottky diode) conducts at approximately 0.6 volts. The germanium diode, however, conducts at a much lower voltage, typically 0.2 volts. This means that the germanium diode is better at small signal rectification applications, such as AM radio detectors, allowing a smaller tuner tank circuit.