answersLogoWhite

0


Best Answer

Presuming tall is a dominant allele (the 2nd parent is heterozygous and "tall" is it's phenotype), then the square would be as follows:

Let T be the dominant gene for tall, and thus every genotype containing this (TT, or Tt) would produce a tall plant.

Let t be recessive, and in the absence of T (tt) causes a plant to be small.

So the homozygous tall parent would be TT, and the heterozygous tall parent would be Tt.

So now you just have to cross them. During meiosis, every gamete from the TT genotype would contain a T allele. However, for the Tt genotype, there is equal chance each gamete will contain EITHER a T or a t.

So the square would be:

xxTxxT

TxTTxTT

txTtxTt

As you can see, 2 out of the 4 offspring have a Tt genotype (heterozygous), so this translates to a 1/2 fraction, or 50%.

Ignore the Xs in the table- if i just used spaces then all the letters crunched up on top of each other when i pressed save...it was the best i could do...:S

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

14y ago

If a plant that is heterozygous tall (Tt) is crossed with a plant that is homozygous short (tt) the cross would look something like this (Tt x tt) T t t Tt tt t Tt tt 50 percent of offspring produced would be heterozygous tall and the other 50 percent would be homozygous short.

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

You would need to determine the phenotypes and genotypes of its parent plants. If one parent is tall and the other short, then the plant would be heterozygous. If both parent plants are tall, you would need to determine their genotypes as well, which may require a study of the previous two generations.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

If a homozygous tall plant (TT) will be crossed with a Homozygous short plant (tt) the resultant off-springs will be (Tt).

Now I assume that when you say homozygous , you mean homozygous alleles for the Height gene.

The phenotypic expression will depend on which allele is dominant, i.e. If the Allele for tall (T) is dominant then all off springs will be tall, and if the allele for short (t) is dominant then all plants will be short.

In this case i assume you mean that TT is dominant, so all off springs (Tt) will be tall.

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

1 Homozygous tall: 3 heterozygous tall : 1 homozygous short

This answer is:
User Avatar

User Avatar

Wiki User

9y ago

If one parent is homozygous tall and the other is heterozygous tall, fifty percent of their offspring will be homozygous. The other fifty percent will be heterozygous.

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

homozygous is dominate trait to heterozygous

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

The genotype is one homozygous tall plant (TT); two heterozygous tall plants (Tt); and one homozygous short plant (tt).

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What kind of offspring will a homozygous tall plant and a homozygous short plant have?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Biology

What is the difference between a Pure tall plant and hybrid tall plant?

Pure TraitsPure traits can be either recessive or dominant. Pure traits may have two dominant genes or two recessive genes. For example, a pea plant may have two genes for tallness, which is dominant trait in pea plants. This plant is homozygous plant with a pure dominant trait for tallness. All of the offspring from this plant will be tall. A pea plant with two genes for shortness is also a pure organism. However, shortness in pea plants is a recessive trait. This plant is a homozygous plant with a pure recessive trait for height. The offspring from this plant will be short if it pollinates with another plant that has two genes for shortness. If this plant pollinates with a tall pea plant, the tall dominant gene will mask or cover up the recessive gene for shortness. Both plants are homozygous or pure plants; one is a pure dominant pea plant, the other is a pure recessive pea plant.Hybrid TraitOrganisms that have two unlike genes for a certain trait are called hybrid. A pea plant with one recessive gene for shortness and one dominant gene for tallness is a hybrid for that trait. A hybrid is called heterozygous, as it has two different alleles. The offspring from a pure tall pea plant, cross-pollinated with a pure short pea plant, will result in a heterozygous plant for tallness. No organism has all dominant or all recessive genes. An organism may be pure in certain traits and hybrid others. Remember, that a dominant trait in one kind of organism may be a recessive trait in another organism.


If yellow peas are dominant over green peas the offspring of a pure dominant and a pure recessive cross is?

Let Y represent the dominant allele, and yrepresent the recessive allele. Let us also assume that "pure" means homozygous for that trait ("pure' is not the usual term for this, "homozygous" is) So, the two genotypes of the parents of the cross are: Parent 1: YY Parent 2: yy To solve a problem like this, one always has to determine what kind(s) of gametes each parent can produce. Both parents are homozygous for their respective traits, so in this case, each parent can only produce one kind of gamete: Parent 1 can only produce Ygametes, and Parent 2 can only produce y gametes. Therefore, every one of their offspring will have the following genotype: Yy Since every one of the offspring of the cross carries a Y allele, and Y is dominant, all of the offspring will be yellow.


How do you know a homozygous trait from a heterozygous trait?

A homozygous trait is controlled by only one kind of allele, while a heterozygous trait is controlled by multiple allele types.


What is true breeding?

Purebred organisms are the organisms in the off springs for many generations which have the same traitA true-breeding organism, sometimes also called a purebred, is an organism that always passes down certain phenotypic traits (i.e. physically expressed traits) to its offspring.


How do geneticists normally tell whether an organism exhibiting a dominant phenotype is homozygous or heterozygous?

They perform a test cross. A test cross takes the unknown genotype and crosses it with a known homozygous recessive. If the F1 generation is all dominant, then they know the organism was a homozygous recessive. If recessive offspring appear, then the organism was a heterozygote. As an example, consider a gene with two alleles, A and a, with Adominant. Now consider the test cross. The unknown genotype can only be one of two possibilities: AA (homozgous dominant) Aa (heterozygous) In a test cross,the unknown genotype is crossed with a known homozygous recessive. Since there are only two possible unknown genotypes, there can be only two possible results. First, consider the case of the unknown genotype being a homozygous dominant. The cross looks like this: AA X aa Remember that a homozygote for an allele can only produce one kind of gamete. In this case the homozygous dominant can only produce gametes with the allele A in them, while the homozygous recessive can only produce gametes with the recessive allele a in them. This means the F1 offspring can only be ONE genotype; Aa. Therefore, all of the offspring would have the dominant phenotype. Now consider the other possible cross, where the unknown genotype is heterozygous: AaX aa Remember that a heterozygote can produce two types of gametes. In this case, the unknown would produce gametes with the dominant allele A or the recessive allele a. The homozygous recessive would still only produce one kind gamete, with the recessive a allele. Therefore, we expect to see only two genotypes in the F1, Aa and aa, in equal proportions. In either case, only one test cross is needed to tell one immediately the nature of the unknown genotype. If all of the F1 are of the dominant phenotype, then the unknown genotype must be homozygous dominant; if a mixture of phenotypes appears in equal proportion, then the unknown genotype must be a heterozygote.

Related questions

What kind of genes does a pure plant have?

homozygous


What is the difference between a Pure tall plant and hybrid tall plant?

Pure TraitsPure traits can be either recessive or dominant. Pure traits may have two dominant genes or two recessive genes. For example, a pea plant may have two genes for tallness, which is dominant trait in pea plants. This plant is homozygous plant with a pure dominant trait for tallness. All of the offspring from this plant will be tall. A pea plant with two genes for shortness is also a pure organism. However, shortness in pea plants is a recessive trait. This plant is a homozygous plant with a pure recessive trait for height. The offspring from this plant will be short if it pollinates with another plant that has two genes for shortness. If this plant pollinates with a tall pea plant, the tall dominant gene will mask or cover up the recessive gene for shortness. Both plants are homozygous or pure plants; one is a pure dominant pea plant, the other is a pure recessive pea plant.Hybrid TraitOrganisms that have two unlike genes for a certain trait are called hybrid. A pea plant with one recessive gene for shortness and one dominant gene for tallness is a hybrid for that trait. A hybrid is called heterozygous, as it has two different alleles. The offspring from a pure tall pea plant, cross-pollinated with a pure short pea plant, will result in a heterozygous plant for tallness. No organism has all dominant or all recessive genes. An organism may be pure in certain traits and hybrid others. Remember, that a dominant trait in one kind of organism may be a recessive trait in another organism.


What is the difference between a pure tall plant and a hybrid tall plant?

Pure TraitsPure traits can be either recessive or dominant. Pure traits may have two dominant genes or two recessive genes. For example, a pea plant may have two genes for tallness, which is dominant trait in pea plants. This plant is homozygous plant with a pure dominant trait for tallness. All of the offspring from this plant will be tall. A pea plant with two genes for shortness is also a pure organism. However, shortness in pea plants is a recessive trait. This plant is a homozygous plant with a pure recessive trait for height. The offspring from this plant will be short if it pollinates with another plant that has two genes for shortness. If this plant pollinates with a tall pea plant, the tall dominant gene will mask or cover up the recessive gene for shortness. Both plants are homozygous or pure plants; one is a pure dominant pea plant, the other is a pure recessive pea plant.Hybrid TraitOrganisms that have two unlike genes for a certain trait are called hybrid. A pea plant with one recessive gene for shortness and one dominant gene for tallness is a hybrid for that trait. A hybrid is called heterozygous, as it has two different alleles. The offspring from a pure tall pea plant, cross-pollinated with a pure short pea plant, will result in a heterozygous plant for tallness. No organism has all dominant or all recessive genes. An organism may be pure in certain traits and hybrid others. Remember, that a dominant trait in one kind of organism may be a recessive trait in another organism.


What kind of plant always produces offspring with the same trait as the parent(s)?

I think it's a true-Bred plant


What happened when Gregor Mendel crossed a tall plant with a short plant?

When Gregor Mindel crossed homozygous tall plants with homozygous short plants,he got hetrozygous tall plants. Tall plants will dominate any small pea plants in the same area.The traits for tall were dominant over short traits. Perhaps both alleles can code for protein, but the dominant product is expressed in the phenotype.


What kind of plant will produce the same gene called?

The offspring of a plant that has all the same genes is called a clone. The same is true for animals.


What is the meaning of true breeding?

A true breeding plant is genetically homozygous. It produces the same type of plants on self fertilization. These plants are very useful for creating hybrids.


If yellow peas are dominant over green peas the offspring of a pure dominant and a pure recessive cross is?

Let Y represent the dominant allele, and yrepresent the recessive allele. Let us also assume that "pure" means homozygous for that trait ("pure' is not the usual term for this, "homozygous" is) So, the two genotypes of the parents of the cross are: Parent 1: YY Parent 2: yy To solve a problem like this, one always has to determine what kind(s) of gametes each parent can produce. Both parents are homozygous for their respective traits, so in this case, each parent can only produce one kind of gamete: Parent 1 can only produce Ygametes, and Parent 2 can only produce y gametes. Therefore, every one of their offspring will have the following genotype: Yy Since every one of the offspring of the cross carries a Y allele, and Y is dominant, all of the offspring will be yellow.


What kind of mutations will always be passed to offspring in the gametes or reproductive cells of organisms?

All characteristics were at some point mutations. Successful genetic mutations that are present in a parent in the homozygous form willl always be transmitted into the gametes. Whether the offspring will have the characteristic phenotypically hinges ont the genetics of both parents and which alleles are in the fertilized egg.


How long does a offspring take?

well it depends on what kind of offspring


What kind of stem does a strawberry plant have?

A strawberry plant has a stem that is called a crown stem. The strawberry's stem is short and very wide.


What kind of offspring does grizzly bears have?

Grizzly bears offspring are called cubs.