Rutherford
During any type of radioactive decay, one isotope (type of atom) will convert into a different isotope.
The lightest "element" that can undergo radioactive decay is the isotope hydrogen-3, which undergoes beta decay. The lightest element with no radioactively stable isotopes is technetium, and its isotopes have different modes of decay.
It is Radioactive Decay.
Gamma decay consists of the emission of gamma rays, which are high-energy photons. This type of radioactive decay occurs when an unstable nucleus releases excess energy in the form of gamma rays to become more stable.
If it is related to Nuclear studies, then the answer would be fusion.
Alpha decay
alpha decay
Radioactive decay occurs when unstable atomic nuclei release energy in the form of radiation to become more stable. Factors that influence this process include the type of radioactive isotope, the amount of the isotope present, and external factors such as temperature and pressure.
Radioactive decay occurs because unstable atomic nuclei release energy in the form of radiation to become more stable. Factors that influence this process include the type of radioactive isotope, the amount of the isotope present, and external factors such as temperature and pressure.
Alpha decay
A. The half-life of a radioactive substance is determined by the specific decay process of that substance, so it is not affected by the mass of the substance or the temperature. B. The mass of the substance does not affect the half-life of a radioactive substance. C. The addition of a catalyst does not affect the half-life of a radioactive substance. D. The type of radioactive substance directly determines its half-life, as different substances undergo radioactive decay at varying rates.
This is a gamma-decay.