answersLogoWhite

0


Best Answer

The Universe and the universal laws of physics, thermodynamics, gravity and matter have all been well established for more than 13 billion yrs. Only 5 billion yrs. ago, in our Milky Way Galaxy of 400 billion stars, a benign cloud containing 90% of Hydrogen, combined with clouds containing 10% of other Nobel gases. The gases were interlaced according to their atomic weights as they, merged and began to drift. The formed gases drifted into an enormous amount of intrinsic electrically charged fissile atoms of naturally occurring galactic elements, integrating with the gases and combining. As the cloud drifted through an absolute zero region of the galaxy, its incorporated gases froze into gigantic, towering mountains of a combination of galactic mixed gases and elements. Embedded in the frozen gas cloud were also some extremely hot, cloud consuming ions. A fusion process was set into motion when friction from the charged galactic ions, ignited and began to consume the flammable gas cloud. The ignited gases, fused a hot spot which, then rendered liquid molten from the galactic elements. The impurities from the solid elements in the hot spot, formed into a slag cauldron which then began to heat up and thaw our frozen young star 4.9 billion yrs. ago. The frozen gas mountains thawed and breached the ruptured surface of our new Sun, flowing toward and finally reaching the extremely hot cauldron, with a mixture of liquefied homogenous gases.

When the thawed, liquefied gases made contact with the molten elements, a cataclysmic molten "splash", gas atomic explosion resulted within the enclosed cauldron (Galvani's Law).

The combination of ionic energy from fission and galvanic/ gas steam pressure produced from fusion caused the firstinternal solar eruption from atomic energy. The tremendous heat and pressure from the first powerful internal explosion caused the thawed, extremely hot neutrons of the fissionable atoms to melt. In that extreme environment the atoms were stripped bare of their neutrons, to a state of unstable ionized and un-ionized electrons (-) and protons (+). A Fission process began from the extreme heat, which caused the bare nuclei to collide and produce enough energy to split and separate the atoms into their sub-atomic state of quarks, neutrinos and leptons (Pauli's Exclusion Principle). The tremendous internal atomic explosion with the force of an exploding star ejected the mountains of thawed unstable sub-atomic photosphere and gases upward with extreme pressure and force within a confined area of the cauldron. The tremendous pressure from the first internal atomic explosion, blasted the small lighter atoms of Hydrogen and other sub-atomic Noble gases into the larger, heavier Oxygen, Etc. atoms. The explosion pierced and impregnated the unstable Oxygen atoms, with the propelled Hydrogen atoms, combining and altering the sub-atomic Noble gases for the first time. This amalgamating and incorporating of sub-atomic ions under extreme heat and pressure began the natural process of the formation of water and other compounds. The process continued, when the impregnated Oxygen atoms were exploded into the absolute zero temperature of interstellar space under extreme atomic pressure from within the confined cauldron of the hot spot. When the encapsulated Hydrogen atoms were blasted into the absolute zero environment, they bonded forever with the Oxygen atoms and became one compound atom with a ratio of 2H:1O, for the first time ever. The extreme pressure and temperatures permanently bonded and compounded the atoms of H.,O.,C.,N.,and etc. into their present, compounded state of H2O (water) and other compounded atoms e.g. CO2, N2+O2,etc. The first eruption simultaneously forged the Kuiper Belt, extending it out 50 AU from the Sun. It also established The Oort (Hydrogen) Cloud which our Sun uses as its fuel source. The first eruption also and simultaneously defined the boundaries of our Heliosphere more than 4.8 billion yrs. ago.

User Avatar

Wiki User

8y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

•increasing the temperature will cause the gas will acquire more KE and overcome the intermolecular forces of the solution. More will therefore escape rather than dissolve.

•increasing the concentration will cause more collisions to occur and therefore will dissolve more.

•increasing pressure will decrease the volume. By doing this, there is less room for the gas to rise, so more will dissolve

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

effected by temperature,concentration of gas molecules,molecular size etc

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

concentration of gas molecules.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

Temperature, pressure

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What factors affect the solubility of a gas in a liquid?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Can pressure affect the solubility of a substances in a solution?

Pressure can affect the solubility but the effect is not important.


What factors affect the solubility of a gas?

bAnswer this question…


What two factors increase the solubility of a gas in a liquid?

Type your answer here... tamprature and concerntration..


According to Henry's law the amount of gas that will dissolve in blood plasma or any other liquid is determined by which of these factors?

solubility of the gas in the liquid


Is a gas's solubility faster in a high pressure liquid?

If the pressure of the gas increase, the solubility in a liquid increase.


What increases the solubility of a gas as it increases?

If you are talking about the solubility of gasses in a liquid then lowering the temperature will increase the solubility of the gas


What happens to the solubility of a gas in a liquid if the partial pressure of a gas above the liquid decreases?

I'm not 100% sure that "solubility" is the right word to use here, but the amount of dissolved gas in a liquid will decrease as the partial pressure of the gas above the liquid decreases.Basically The solubility decreases.


When a gas is dissolved into a liquid what happens when the pressure increases?

More gas dissolves into the liquid.


What do you have to do to increase the solubility of a gas in a liquid?

Increasing the pressure and decreasing the temperature the solubility increase.


Does temperature have the same effect on the solubility of a gas in a liquid and solid in liquid?

yes it does


What two factors change the solubility of a gas?

concentration of gas molecules.


How does increasing the temperature of a gas solvent affect the solubility of a gas?

Increasing the temperature of a solvent decreases the solubility of a gas Generally, increasing solvent temperature decreases the solubility of gases.