Math and Arithmetic
Algebra
Blood Types

# What is b and a if both are positive integers but a does not equal b?

###### Wiki User

Then they are, simply, two different integers. Any two positive integers will do, according to the specification.

Then they are, simply, two different integers. Any two positive integers will do, according to the specification.

Then they are, simply, two different integers. Any two positive integers will do, according to the specification.

Then they are, simply, two different integers. Any two positive integers will do, according to the specification.

๐
0
๐คจ
0
๐ฎ
0
๐
0

###### Wiki User

Then they are, simply, two different integers. Any two positive integers will do, according to the specification.

๐
0
๐คจ
0
๐ฎ
0
๐
0

## Related Questions

When one or both of the integers is/are zero.a*b=0 if a=0, b=0, or both a and b are equal to 0. In other words, if one or both integers are zero.

a positive integer A that, if increased or decreased by the same positive integer B, yields 2 positive integers, A+B and A-B, that are both perfect squares" OK... i figured out kinda what it meant... i think the integer B is equal to A-1, like the rectangular number definition: n(n-1)

Given Positive Integers a and b there exists unique integers q and r satisfying a=bq+r; 0 lesser than or equal to r&lt;b

No. All integers (positive And negative) are rational numbers (not irrational). A rational number can be expressed as a/b, where a &amp; b are both integers, and b is nonzero. So the integer -3 can be expressed as a/b, where [a = 3, and b = -1] for example, or [a = -6 and b = 2].

The sum of two positive integers is never zero. The sum of two numbers a and b can only be zero if a=-b, or a=0 and b=0. Since 0 is not a positive integer, and a and b cannot both be positive integers if a=-b, then it is impossible for the sum of two positive integers to be zero. _______________________________________________________________ The above answer is correct. Here is another way to say it: An integer is any whole number including negative numbers, positive numbers and zero. However, a "positive integer" is a whole number greater than zero. The "sum of two positive integers" means you are adding two numbers greater than zero together. Therefore, the sum of two positive integers can never be a negative integer, and can never be zero. Example: 1 + 1 = 2

The two integers are A and A+40 or, equivalently, B and B-40.

Yes.Suppose a and b are two positive rational numbers. Then a can be expressed in the form p/q where p and q are positive integers, and b can be expressed in the form r/s where r and s are positive integers.Then b - a = r/s - p/q = (qr - ps)/qs.Now, since p, q, r and s are integers, thenby the closure of the set of integers under multiplications, qr, ps and qs are integers;q and s are positive => qs is positive, andby the closure of the set of integers under addition (and subtraction), qr - ps is an integer.That is, b - a = (qr - ps)/qs is a ratio of two integers, where the denominator of the ratio is positive.

It's equal to positive b squared, or (b x b) .

Rational fractions of the form a/b where both a and b are integers, b &gt; 0 and, in its simplified form, the denominator is not 1.

Zero is a rational number. It is because, it can be written as 0/1, which is in the form a/b where, a and b (here a = 0 and b = 1) are both integers and b is not equal to 0.

Complex number... though a and b don't have to be integers, and if a = 0 then it's a pure imaginary number.

No. If both parents are positive, the child will be positive. If both parents are negative, the child will be negative. Parents who are negative and positive can have children who are either positive or negative. '+' + '+' = '+' '-' + '-' = '-' '+' + '-' = '-' or '+'

Both parents A = child can be A or O but not B usually, not 100% certainty...

Any negative integer can be factored to -1 times its positive value. Because negative one times itself is positive one, when multiplied by each other they cancel out. So if you're multiplying a negative integer A by a negative integer B. Replace A and B with -1*|A| and -1*|B| (You can do this because you know A and B are negative), and use the distributive property to rearrange them. Now you can see the -1*-1 term and equate it to 1, leaving only the |A| and |B| behind. Because two positive numbers multiplied together are always positive, the result will always be positive. Represented algebraically, as long as A and B are negative integers, the following is true: AB = -1|A|*-1|B| = -1*-1|AB| = |AB|.

yes. you are right. both parts of the question has to be equal.

Yes, the number 88 is rational. A "rational number" is any number that can be expressed as a ratio of integers. That is A/B where A and B are integers, and not zero. Rational numbers include all positive and negative integers and all positive and negative fractions (and mixed numbers when expressed as a fraction).

If a and b are integers, then a times b is an integer.

Yes. There is an injective function from rational numbers to positive rational numbers*. Every positive rational number can be written in lowest terms as a/b, so there is an injective function from positive rationals to pairs of positive integers. The function f(a,b) = a^2 + 2ab + b^2 + a + 3b maps maps every pair of positive integers (a,b) to a unique integer. So there is an injective function from rationals to integers. Since every integer is rational, the identity function is an injective function from integers to rationals. Then By the Cantor-Schroder-Bernstein theorem, there is a bijective function from rationals to integers, so the rationals are countably infinite. *This is left as an exercise for the reader.

Yes. Because, the parents could both be B Rh positive O Rh positive. But, if the parents did not both have O Rh positive then, no.

There are infinitely many answers: 1+a/b and 2-a/b for any pair of positive integers a and b, with a&lt;b.

If there both b positive, then probally not. But if the dad was a b positive and the mum was an a positive then there would be a 50/50 chance of tem having an ab positive.

Not sure if you want just a positive and a negative integer, added or more info.2 positive integers a & b (easiest)a + b the result is positive.2 negative integers a & bAdd the magnitude of a and magnitude of b, the result is negative.Example -2 + -5 = -(2+5) = -(7) = -7a is positive, b is negative, take the difference of the magnitudes, thenif |a| (magnitude of a) greater than |b| (magnitude of b), the result is positive.if |a| (magnitude of a) less than |b| (magnitude of b), the result is negative.Example: 2 + -5 (the difference of magnitudes is 5-2 = 3The negative number has a bigger magnitude, so the answer is negative: -3-2 + 5The difference is still 3, but the positive number has bigger magnitude,so the result is positive: +3

Both sets of parents can have B positive blood and still give birth to an O positive child. B positive blood can be BB or BO. If both parents are BO positive, they have a 25% chance of having an O positive child.

if abc is 0 then at least one of the factors must be zero. since a and b are both nonzero, c must be zero.

###### Math and ArithmeticGeometryProofsNumbers Laboratory TestingAlgebraPica Disorder

Copyright ยฉ 2021 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply.