There are two sides to the coin, so the probability of getting heads or tails on one flip of the coin is 1/2 or 50%.
Each time you flip a coin, the probability of getting either heads or tails is 50%.
The probability of the coin flip being heads or tails is 100%.
If the coin is not biased, the answer is 0.375
The probability of 'heads' on any flip is 50% .
The probability that a single coin flip will come up heads is 0.5.
There is the probability of 1/2 if it is a fair coin. There is the probability of 1 if it is a double-headed coin. There is the probability of 0 if it is a double-tailed coin.
if you flip a coin once, the chance it will be heads is 50%
If it is a fair coin then the probability is 0.5
The probability of a flipped coin landing heads or tails will always be 50% either way, no matter how many times you flip it.
The probability on the first flip is 50% .The probability on the 2nd flip is 50% .The probability on the 3rd flip is 50% .The probability on the 4th flip is 50% .The probability of 4 heads is (50% x 50% x 50% x 50%) = (0.5)4 = 1/16 = 6.25%
You still still have a 1:2 chance of getting heads regardless of the times you flip.
The probability of getting all heads if you flip a coin three times is: P(HHH) = 1/2 ∙ 1/2 ∙ 1/2 = 1/8. The probability of getting all tails if you flip a coin three times is: P(TTT) = 1/2 ∙ 1/2 ∙ 1/2 = 1/8. The probability of getting all heads or all tails if you flip a coin three times is: P(HHH or TTT) = P(HHH) + P(TTT) = 2/8 = 1/4.
If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.
The probability of each coin flip, independently, is 0.5 or 50%. The probability of getting one result (either heads or tails) four times in a row is 0.5 to the fourth power or 0.0625, which equals 6.25%
For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times
The probability of getting a heads on the first flip is 1/2. Similarly, the probability on each subsequent flip is 1/2, since they are independent events. The probability of several independent events happening together is the product of their individual probabilities.
The probability of getting 6 heads and 1 tail when flipping a fair coin 7 times is:7*(1/2)6*(1/2) = 7/128.
Flip a coin 1000 times, counting the number of 'heads' that occur. The relative frequency probability of 'heads' for that coin (aka the empirical probability) would be the count of heads divided by 1000. Please see the link.
The probability of getting all heads or all tails in 5 flips of a coin is 1 in 16.The probability of getting a head or a tail on the first flip is 1 in 1. The probability of each of the following coins matching the first coin is 1 in 2. Simply multiply the five probabilities (1 in 1) (1 in 2) (1 in 2) (1 in 2) (1 in 2) and you get 1 in 16.It is true that the probability of getting all heads is 1 in 32, and the probability of getting all tails is also 1 in 32. Since the question asked the probability of both cases (all heads or all tails), the answer is 1 in 16.
50%. there are only 2 choices heads or tails and that doesn't change no matter how many times you flip the coin
This is a probability question. Probabilities are calculated with this simple equation: Chances of Success / [Chances of Success + Chances of Failure (or Total Chances)] If I flip a coin, there is one chance that it will land on heads and one chance it will land on tails. If success = landing on heads, then: Chances of Success = 1 Chances of Failure = 1 Total Chances = 2 Thus the probability that a coin will land on heads on one flip is 1/2 = .5 = 50 percent. (Note that probability can never be higher than 100 percent. If you get greater than 100 you did the problem incorrectly) Your question is unclear whether you mean the probability that a coin will land on head on any of 8 flips or all of 8 flips. To calculate either you could write out all the possible outcomes of the flips (for example: heads-heads-tails-tails-heads-tails-heads-heads) but that would take forvever. Luckily, because the outcome of one coin flip does not affect the next flip you can calculate the total probability my multiplying the probabilities of each individual outcome. For example: Probability That All 8 Flips Are Heads = Prob. Flip 1 is Heads * Prob. Flip 2 is Heads * Prob. Flip 3 is Heads...and so on Since we know that the probability of getting heads on any one flips is .5: Probability That All 8 Flips Are Heads = .5 * .5 * .5 * .5 * .5 * .5 * .5 * .5 (or .58) Probability That All 8 Flips Are Heads = .00391 or .391 percent. The probability that you will flip a heads on any of flips is similar, but instead of thinking about what is the possiblity of success, it is easier to approach it in another way. The is only one case where you will not a heads on any coin toss. That is if every outcome was tails. The probability of that occurring is the same as the probability of getting a heads on every toss because the probability of getting a heads or tails on any one toss is 50 percent. (If this does not make sense redo the problem above with tails instead of heads and see if your answer changes.) However this is the probability of FAILURE not success. This is where another probability formula comes into play: Probability of Success + Probability of Failure = 1 We know the probability of failure in this case is .00391 so: Probability of Success + .00391 = 1 Probability of Success = .9961 or 99.61 percent. Therefore, the probability of flipping a heads at least once during 8 coin flips is 99.61 percent. The probability of flipping a heads every time during 8 coin flips is .391 percent.
The flip of a fair coin is 0.5 heads and tails, so you want the probability of head & head. This probability of garlic, garlic two consecutive tosses is 0.5 * 0.5 = 0.25.
I f you flip the same coin 5 times in a row, chances are 1/32 ( 1/2 each flip multiplied 5 times) Ans: 1 in 32
The probability that the coin will land on heads each time is 1/2. (1/2) to the tenth power is 1/1024. This is the probability that the coin will not land on heads. Subtract it from one to get the probability that it will : 1-(1/1024)There is a 1023/1024 or about 99.90234% chance that the coin will land on heads at least once.(There is a 1/1024 chance that the coin will land on heads all four times.)
You collect data. Flip a coin 100 times, you get 49 heads and 51 tails, so the probability of H is 0.49.