0.92 v
The EMF of a copper-aluminum voltaic cell can be determined by the standard reduction potential of each metal. Copper has a higher standard reduction potential than aluminum, so the cell will have a positive EMF. The exact value can be determined by calculating the difference between the reduction potentials of copper and aluminum.
The standard cell potential for a cell made from gold and copper is the difference in standard reduction potentials between the two metals. The standard reduction potential for gold is +1.50 V and for copper is +0.34 V. Therefore, the standard cell potential would be 1.50 V - 0.34 V = 1.16 V.
3.51 v
Al | Al^3+ Zn^2+ | Zn
Al(s) | Al3+(aq) Ni2+(aq) | Ni(s)
The standard cell notation for a galvanic cell made with zinc and aluminum is represented as: Zn(s) | Zn²⁺(aq) || Al³⁺(aq) | Al(s). In this notation, the anode (zinc) is listed on the left, followed by its ion in solution, then the double vertical line representing the salt bridge, and finally the cathode (aluminum) and its ion in solution. This format clearly indicates the direction of electron flow from zinc to aluminum.
In a standard galvanic cell using zinc and aluminum, the zinc metal will act as the anode and the aluminum metal will act as the cathode. Zinc will undergo oxidation at the anode, releasing electrons which flow through the external circuit to the cathode where aluminum will undergo reduction. This flow of electrons creates an electrical current.
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
4.2 V
1.05 V
0.92V
At the cathode of the electrolytic cell with zinc and aluminum electrodes, the reduction of aluminum ions into aluminum metal will occur. Aluminum ions gain electrons to form solid aluminum metal, while zinc remains unchanged as it does not participate in the reaction at the cathode.