Math and Arithmetic
Algebra
Calculus

# What is v x 2x?

2vx

🙏
3
🤨
6
😮
7
😂
5

V2X

🙏
2
🤨
1
😮
2
😂
2

yyyy

🙏
2
🤨
2
😮
2
😂
3

7

🙏
1
🤨
1
😮
1
😂
1

2vx

🙏
1
🤨
3
😮
1
😂
1

2xv

🙏
1
🤨
1
😮
2
😂
1

Gdss

🙏
0
🤨
0
😮
0
😂
0

15

🙏
0
🤨
0
😮
0
😂
0

5

🙏
0
🤨
0
😮
0
😂
0

52

🙏
0
🤨
0
😮
0
😂
0

Hsha

🙏
0
🤨
0
😮
0
😂
0

## Related Questions

Assuming you mean (2x) (-x) the answer is -2x^2

2X * 2X * 2X = 8X^3 2X^3 is saying 2*( X * X * X) = 2X^3

2x + 3 = x 2x + 3 - 3 = x - 3 2x = x - 3 2x - x = x - 3 - x x = -3

(2x + 1) + (x*x - 2x + 1) = x^2 + 2x - 2x + 1 + 1 = x^2 + 2

x times 2x is 2x squared or 2x2

tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x

What is X if 2x + 4 = 36 What is X ? 2x + 4 = 36

Factored?2X2 - 2X2X(X - 1)================If this were set to 0, X = 0 and X = 1

f(x)=cos(sin(x2)) [u(v)]' = u'(v) * v' so f'(x) = cos'(sinx(x2)) * sin'(x2) * (x2)' f'(x) = -sin(sin(x2)) * cos(x2) * 2x = -2x sin(sin(x2)) cos(x2)

y = 2sin(x)cos(x)Use the product rule: uv' + vu' where u is 2sin(x) and v is cos(x) to find first derivative:y' = 2sin(x)(-sin(x)) + cos(x)2cos(x)Simplify:y' = 2cos2(x)-2sin2(x)y' = 2(cos2(x)-sin2(x))Use trig identity cos(2x) = cos2(x)-sin2(x):y' = 2cos(2x)Take second derivative using chain rule:y'' = 2(-sin(2x)cos(2x))Simplify:y'' = -2sin(2x)(2)Simplify:y'' = -4sin(2x)y'' = -4sin(2x)

2x squared - 2x plus xy - y or 2x(x-1) + y(x-1) or (x-1)(2x+y)

int x ln5x dx by parts u = ln5x du = 1/5x or 5x^-1 dv = x v = 1/2x^2 uv - int v du ln5x 1/2x^2 - int 1/2x^2 5x^-1 1/2ln5x*x^2 - 1/6x^3 5x + C

y = (x^2)(sin x)(2x)(cos x) - 2sin xy' = [[(x^2)(sin x)][(2x)(cos x)]]' - (2sin x)'y' = [[(x^2)(sin x)]'[(2x)(cos x)] + [(2x)(cos x)]'[(x^2)(sin x)]]- (2sin x)'y' = [[(x^2)'(sin x) + (sin x)'(x^2)][(2x)(cos x)] + [(2x)'(cos x) + (cos x)'(2x)][(x^2)(sin x)] ] - 2(cos x)y' = [[(2x)(sin x )+ (cos x)(x^2)][(2x)(cos x)] + [2cos x - (sin x)(2x)][(x^2)(sin x)]] - 2(cos x)y' = (4x^2)(sin x cos x) + (2x^3)(cos x)^2 + (2x^2)(sin x cos x) - (2x^3)(sin x)^2 - 2cos xy' = (6x^2)(sin x cos x) + (2x^3)(cos x)^2 - (2x^3)(sin x)^2 - 2cos x (if you want, you can stop here, or you can continue)y' = (3x^2)(2sin x cos x) + (2x^3)[(cos x)^2 - (sin x)^2] - 2cos xy' = (3x^2)(sin 2x) + (2x^3)(cos 2x) - 2 cos xy' = (2x^3)(cos 2x) + (3x^2)(sin 2x) - 2 cos x

sin(2x), cos(2x), cosec(2x), sec(2x), tan(x) and cot(x) are all possible functions.

2x - 6 = x - 43 2x = x - 37 x = -37

###### Math and ArithmeticAlgebraMathematical FinanceAmerican CarsCalculus Copyright © 2021 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply.