The wire will move due to magnetic forces got from the compass needle since its a good conductor of electricity.
A compass needle is a tiny magnet that aligns with the magnetic field around it. When brought near an electromagnet, the magnetic field produced by the electromagnet affects the compass needle, causing it to align with the new magnetic field created by the electromagnet.
This proves that a magnetic field is developed around the conductor wen current flows through it...
The compass needle is a magnet and as you have probably tried, a magnet will 'stick' to an Iron bar. Thus as you move the compass near the Iron, its magnetic field lines are bent by the Iron and become locally stronger than the field lines of the planet, deflecting the needle away from north.
Because of the magnetic force. The compass needle is also magnetic.Because of the magnetic force. The compass needle is also magnetic.Because of the magnetic force. The compass needle is also magnetic.Because of the magnetic force. The compass needle is also magnetic.
When a compass gets near an electromagnet, the magnetic field produced by the electromagnet interferes with the Earth's magnetic field, causing the compass needle to align with the electromagnet's field instead. This phenomenon is known as magnetic deflection.
A compass needle moves near a wire carrying an electric current due to the magnetic field generated by the flow of electrons in the wire. This magnetic field interacts with the magnetic field of the compass needle, causing it to align itself with the direction of the current flow.
Yes, the compass needle will change direction if the flow of electricity in the wire near it is reversed. This is because the flow of electricity creates a magnetic field around the wire, which can interact with the magnetic field of the compass needle.
Yes, when the flow of electricity in a wire near a compass needle is reversed, the magnetic field generated by the current also changes direction. This change in magnetic field influences the orientation of the compass needle, causing it to change direction accordingly.
The compass needle is magnetic so if you place a magnet near the compass, the needle will change direction either attracting or reppeling.
When a compass needle is placed near a bar magnet, it aligns itself with the magnetic field created by the magnet. The compass needle is a small magnet itself, with its north pole attracted to the south pole of the bar magnet and repelled by its north pole. If the compass needle points south, it indicates that the bar magnet's south pole is near the compass's north pole, demonstrating the fundamental property of magnetic attraction and repulsion. Thus, the orientation of the compass needle reflects the magnetic field direction of the bar magnet.
The compass needle is itself a magnet which is why it always points north according to the earth's magnetic field. If you place a magnet (Whose magnetic power is stronger than the earth's) close to the compass its needle will be attracted t the magnet and not to the North Pole.
A compass needle placed near a current-carrying wire shows deflection because the moving charges in the wire create a magnetic field around the wire. This magnetic field interacts with the magnetic field of the compass needle, causing it to align with the direction of the current flow in the wire.