If the velocity is constant (i.e., there is no acceleration). Terminal velocity is an example, although any constant velocity would fit this description.
For the instantaneous value of average velocity, average speed and average velocity are equal.
At a small time interval, the average velocity is approximately equal to the instantaneous velocity. However, the values of the average velocity and the instantaneous velocity approach each other , as the length of the time interval is decreased more and more.
In uniform motion.
Mainly, when the velocity doesn't change. Also, in the case of varying velocity, the instantaneous velocity might, for a brief instant, be equal to the average velocity.
When an object is in constant motion (when there is no acceleration). At any point in that motion the average and instantaneous velocities will be the same.
you are still. motion is at rest.
When there is no acceleration or when there is constant acceleration. When either of these cases is present, the graph of velocity versus time will be linear. When there is linear velocity, the average velocity will equal the instantaneous velocity at any point on the graph.
Mainly when the velocity is constant.
That is the case when you are talking about instantaneous speed and velocity - or when the velocity is constant. In the case of an average speed and velocity, this relation does not hold.
It equals an undefined entity. The average acceleration of an object equals the CHANGE in velocity divided by the time interval. The term "change in velocity" is not the same as the term "velocity", "average velocity", or "instantaneous velocity".
If the object begins from rest and a constant force is applied to it, then at the end of one second, the magnitude of its velocity is numerically equal to the magnitude of its average acceleration, although the units are different.
the velocity vector
A distance-time graph shows the movement of an object with respect to time. The average slope between any two points on the graph is equal to the average velocity of the object between those two points. The instantaneous slope (or derivative) at a point on the graph is equal to the instantaneous velocity of the object at that point.
Yes. In smooth linear motion, the average speed and the instantaneous speed are equal.
Yes. For a start, this happens when the object moves at a constant velocity. Also, if moving in a straight line, even if the object changes speed there must needs be a moment when its instantaneous speed is equal to its average speed - since it cannot change speed suddenly, it must do so gradually.
Only if speed is constant. There can be no acceleration if the average speed is equal to the instantaneous speed.
The average acceleration of an object is equal to the instantaneous acceleration of that object if the acceleration is constant (i.e. linear when graphed). However, when there is not constant acceleration, there is no guarantee that the average acceleration is equal to the instantaneous acceleration (i.e. non-linear when graphed).
Never.Average velocity is total displacement (final position minus initial position) divided by the total time: vave = (xf-xi)/tAcceleration is the rate at which your velocity is changing or change in velocity over time: a= (vf-vi)/tThese two quantities may have the same numerical value but will never have the same units.Average velocity for a trip can equal instantaneous velocity at a certain point during the trip, however, at any time during a trip in which the velocity is constant or at half way through the total time of a trip where the acceleration is constant.
The magnitude of average velocity of an object equal to its average speed if that object is moving with CONSTANT velocity.
Because speed is the magnitude of the velocity vector. The velocity consists of the speed and the direction, and the whole thing can be embodied in a 3D vector. If you like the velocity is the magnitude (the speed), which is a scalar (just a real number), multiplied by a unit vector in the right direction.
Average acceleration will be equal to instantaneous acceleration when an object has an uniform acceleration throughout its motion. Example : A car accelerating at 1m/s2 uniformly in a straight line.
When acceleration is zero.