answersLogoWhite

0


Best Answer

The strength of induced current depends on the number of coils of the cunductor and the strength of the magnet.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Write any two factors on which strength of induced current depends?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Electrical Engineering

Which law gives the direction of induced current?

LENZ LAW gives the direction of induced current.


What are the reasons why a current is induced in a coil?

Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.


Define the term induced current?

a current can be induced by changing the area of a coil in a constant magnetic field. By Faraday's Law: the induced current is proportional to the rate of the change of flux in a loop of wire. With magnetic flux being defined as the product of the magnitude of the magnetic field and the area of the loop. The direction of the current is found from Len's Law: The induced current produces an induced magnetic field that opposes the change of flux causing the current.CommentYou don't induce a current, you induce a voltage. And Faraday's Law states that the induced voltage, not current, is proportional to the rate of change of flux! If the coil is open circuited, a voltage is still induced into the coil but no current will flow. For current to flow, the coil must be connected to a load (or short circuited), and this current is dependent upon the values of the induced voltage and the resistance of the load.


What are the cause of induced emf?

A change in current causes a voltage to be induced into an inductive circuit, which opposes that change of current. This is because the change in current is accompanied by a change in magnetic flux which 'cuts' the conductors and induces a voltage into them.


In a transformer what induces a current in the secondary coil?

The current flowing in the primary generates a magnetic field which induces a current in the secondary winding.AnswerNo current is induced into the secondary winding of a transformer. What is induced is voltage. Current will only flow in the secondary winding if it is connected to the load, and it is the load that determines the current, not the primary current.

Related questions

What are the factors affecting the electromagnetic induction?

Identify factors which affect the power of electromagnet?


What factors determine the voltage induced in a wire?

V = I * R or I = ( V / R ) I = current (amps) V = Voltage R = Resistance The current in a circuit depends on the applied voltage and the resistance of the circuit.


What determines whether an induced current is a direct current or an alternating current?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. The direction of the induced voltage is determined by the direction of the changing current that induces that voltage, because the induced voltage will always act to oppose that change in current. So, if the current is increasing, then the direction of the induced voltage will act to opposethe increase in current. If the current is decreasing, then the direction of the induced voltage will act to sustainthat current.


Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


Who formulated a law for determining the direction of the induced current in a conductor?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. If the conductor into which that voltage is induced forms a complete circuit, then a current will result. But it's the voltage that's induced, NOT the current! The direction of the induced voltage is explained by Lenz's Law which, in simple terms, tells us that the direction of the inducted voltage is always such that it will oppose the change in current that causes it. So the induced voltage will oppose any increase in current, but will act in the same direction as a reduction in current.


Which law gives the direction of induced current?

LENZ LAW gives the direction of induced current.


Is flow of induced current necessary when induces emf is being produced?

There is no such thing as an 'induced current'. Voltages are induced, not currents. If a voltage is self-induced into a coil, then that voltage will oppose any change in current. If a voltage is mutually-induced into a separate coil, no current will flow unless that coil is connected to a load.


How does the strength of the magnet affect the current induced?

The strength of the magnet and its proximity effect the current produced. The magnetic flux density falls quickly so it is important to get close. The stronger the magnet the more lines of flux that pass a point as it moves. Or as something passes by it.


What are the reasons why a current is induced in a coil?

Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.


How was current produce or induced?

Current is induced and not produced. when an electric wire is passed through magnetic field the current is induced in the electric wire, this electric wire is enamelled copper conductor of a rotor.AnswerCurrent is never 'induced' into a conductor. It is a voltage that is induced. If that conductor is then part of a complete circuit, then the induced voltage will cause a current to flow. The induced voltage will occur even when the conductor is open circuited.


What is difference between induced voltage and induced current?

Just as a current flowing through a wire will produce a magnetic field, so a wire moving through a magnetic field will have a current flowing through it. This is called electromagnetic induction and the current in the wire is called induced current. A stationary wire in the presence of a changing magnetic field also has an induced current. A changing magnetic field can be produced either by moving a magnet near to the stationary wire or by using alternating current. A stationary wire in a magnetic field which is not changing will have no current induced in it. You will sometimes see this effect described as induced voltage. Strictly speaking, you will only get an induced current in the wire if it is part of a complete circuit. A wire which is unconnected at both ends will have a difference in voltage between the ends (a potential difference) but current can only flow when the wire is in a circuit. Induced current is used in electricity generation and transformers.Another AnswerThere is no such thing as an 'induced current', only an 'induced voltage'. Current will flow only if the conductor into which the voltage is induced forms part of a closed circuit.


Is flow of induce current necessary when induce emf is being produce?

There is no such thing as an 'induced current'. Voltages are induced, not currents. If a voltage is self-induced into a coil, then that voltage will oppose any change in current. If a voltage is mutually-induced into a separate coil, no current will flow unless that coil is connected to a load.