0.008 ??
0.008 * 9000 barrels
= 72 + 9000 barrels
= 9072 barrels net amount loaded
------------------------------------------------
The coefficient of thermal expansion for oxygen is approximately 0.0012 per degree Celsius. This means that for every one degree Celsius increase in temperature, oxygen will expand by 0.12% of its original volume.
The thermal expansion coefficient of ammonia is approximately 0.0045 K^-1 at 20 degrees Celsius. This coefficient represents how much the volume of ammonia will expand per degree of temperature increase.
The coefficient of thermal expansion for liquid caustic soda at 50% concentration is approximately 0.0008 per degree Celsius (1/°C). This value indicates how much the volume of the liquid will change with temperature variations.
It depends on how significant the temperature variation is. Jet fuel has a coefficient of thermal expansion of 0.00099/C. That means that for every 10 degree Celsius rise in temperature the volume will increase by almost 1%.
No, Celsius is a unit of temperature measurement on the Celsius scale. It is not the opposite of temperature, but a way to quantify it.
The thermal expansion coefficient for motor spirit, also known as gasoline, is approximately 0.00096 per degree Celsius. This means that for every degree Celsius increase in temperature, gasoline will expand by 0.00096 of its original volume.
To find the net amount of cargo loaded, you need to consider the expansion of the gasoline due to the change in temperature. Since the coefficient of expansion is 0.0008 per degree Celsius, you can calculate the increase in volume of the gasoline when it heats up from 27 degrees Celsius to its final temperature. You can then subtract this increase in volume from the initial volume to find the net amount of cargo loaded.
The coefficient of linear expansion is a constant value that quantifies how much a material expands per degree Celsius increase in temperature. The actual expansion of an object can be calculated by multiplying the coefficient of linear expansion by the original length of the object and the temperature change.
The coefficient of volume expansion of turpentine is typically around 9 x 10^-4 per degree Celsius. This coefficient indicates how much the volume of turpentine will increase for a one-degree Celsius increase in temperature.
The coefficient of thermal expansion for oxygen is approximately 0.0012 per degree Celsius. This means that for every one degree Celsius increase in temperature, oxygen will expand by 0.12% of its original volume.
The volume coefficient of expansion for ice is approximately 0.090 × 10^-3 per degree Celsius. This means that for every degree Celsius increase in temperature, ice expands by about 0.090 × 10^-3 of its original volume.
-39 degrees celsius to 450 degrees celsius
The coefficient of thermal expansion of air is approximately 0.00367 per degree Celsius.
The thermal expansion coefficient of ammonia is approximately 0.0045 K^-1 at 20 degrees Celsius. This coefficient represents how much the volume of ammonia will expand per degree of temperature increase.
The coefficient of linear expansion for copper is around 16.5 x 10^-6 per degree Celsius. This means that for every degree Celsius increase in temperature, a one-meter length of copper pipe will expand by 16.5 micrometers in length.
The volumetric thermal expansion coefficient of air is approximately 0.00367 per degree Celsius.
The coefficient of volume expansion is the triple of the linear expansion coefficient. So with a volume expansion coefficient of 60×10^-6/°C, the linear expansion coefficient would be 20×10^-6/°C.