M= moles in solution/liters
so plug in what you know
3.0M of KCl solution = moles in solution/ 2.0L
multiply both sides by 2.0L
moles solute = 1.5 moles KCl
so you need 1.5 moles KCl to prepare the solution
4 gram molecular weights (moles): However many grams four moles* of the solute is. * Hint: four moles of sodium chloride weighs less than four moles of sucrose.
This is a chemical calculation. there are 3.267 moles in this solution.
237.5 mL (200mL if you are keeping track of significant figures). Molarity is moles/liters. To make 900mL of a 2M solution, you need 1.8 moles of solute. There are 1.8 moles of solute in 237.5 mL of 8M solution.
moles KCl = ( M solution ) ( V solution in L )moles KCl = ( 2.2 mol KCl / L solution ) ( 0.635 L of solution )moles KCl = 1.397 moles KCl
Moles KOH = Molarity x Volume = 0.214 moles/liter x 0.0602 liters = 0.0129 moles KOH. Remember, 60.2 mL = 0.062L
10
Molarity = moles of solute/liters of solution or, for our purposes moles of solute = liters of solution * Molarity moles of AgNO3 = 0,50 liters * 4.0 M = 2.0 moles of AgNO3 needed --------------------------------------
Concentration of NaOH = 0.025 M = 0.025 Moles per Litre of SolutionVolume of Solution required = 5.00LWe can say therefore that:Number of Moles of NaOH needed to prepare the solution= Concentration of NaOH * Volume of Solution requiredTherefore:Number of Moles of NaOH needed to prepare the solution= 0.025M * 5.00L= 0.125molesFrom this we can say that 0.125 moles of NaOH are needed to prepare a 5.00 L solution with a concentration of 0.025M of NaOH.
4 moles or 160 g NaOH is required for one litre solution.
500ml = 500cm3 = 0.5dm3 0.250M = 0.250mol/dm3 number of moles = molarity x volume number of moles = 0.250mol/dm3 x 0.5dm3 = 0.125mol 0.125mol of NaCl is needed to prepare the required solution.
7.18
To find the moles of NaOH needed, use the formula: moles = concentration (molarity) x volume (liters). First, convert 300 mL to liters (0.3 L). Then, calculate: moles = 0.2 mol/L x 0.3 L = 0.06 moles. Therefore, 0.06 moles of NaOH are needed to prepare 300 mL of a 0.2 M solution.
To calculate the moles of potassium hydroxide needed, use the formula: moles = molarity * volume (in liters). First, convert 300 mL to liters (0.3 L). Then, moles = 0.250 mol/L * 0.3 L = 0.075 moles of potassium hydroxide needed to prepare the solution.
To prepare a 2 M solution of KOH, you would need to calculate the moles of KOH required first. Then use the formula mass of KOH (56 g/mol) to convert moles to grams. First, calculate the moles needed: 2 moles/L * 0.25 L = 0.5 moles. Then, convert moles to grams: 0.5 moles * 56 g/mole = 28 grams of KOH needed.
0.125 Molar solution! Molarity = moles of solute/Liters of solution Algebraically manipulated, Moles of copper sulfate = 2.50 Liters * 0.125 M = 0.313 moles copper sulfate needed ===========================
599.6
To find the volume of solution needed, you can use the formula: moles = Molarity × Volume. Rearranging the formula to solve for volume: Volume = Moles / Molarity. Plugging in the values, you get Volume = 0.50 moles / 0.25 M = 2 liters of solution needed.