He most probably predicted it. He could have analyzed the table and could have thought there are a lot more elements out there. He probably thought the scientist in his generation did not know all of the elements.
Dmitri Mendeleev was able to predict the properties of germanium by leaving gaps in his periodic table for elements that were yet to be discovered. He noticed a pattern in the properties of known elements and used this pattern to predict the existence and properties of undiscovered elements, such as germanium.
Mendeleev arranged the known elements by increasing atomic mass and grouped elements with similar properties together. Gaps in the table indicated elements that were yet to be discovered. By observing the patterns in the properties of known elements within each group, Mendeleev was able to predict the properties of the undiscovered elements that would fill these gaps.
Mendeleev's periodic table allowed for the prediction of the properties of unknown elements by identifying gaps in the table where elements had not yet been discovered. By examining the properties of neighboring elements, Mendeleev was able to predict the properties of the missing elements and suggest their existence. His periodic table provided a framework for organizing elements based on their atomic mass and chemical properties, which allowed for the accurate prediction of the properties of undiscovered elements.
Mendeleev predicted the existence and properties of germanium by leaving gaps in his periodic table for elements that had not yet been discovered. He correctly deduced the properties of the missing element based on the pattern of elements around its position in the table. When germanium was discovered, its properties closely matched Mendeleev's predictions, confirming the validity of his periodic table.
properties. Mendeleev's periodic table had gaps for elements that had not been discovered yet, but he was able to predict their properties based on the patterns of the elements surrounding the gaps. This led to the discovery of new elements like gallium, germanium, and scandium.
Mendeleev was able to predict the properties of the elements that were not discovered at that time. He left gaps for these elements in his Periodic Table.
Dmitri Mendeleev was able to predict the properties of germanium by leaving gaps in his periodic table for elements that were yet to be discovered. He noticed a pattern in the properties of known elements and used this pattern to predict the existence and properties of undiscovered elements, such as germanium.
He used the difference method
3
Mendeleev arranged the known elements by increasing atomic mass and grouped elements with similar properties together. Gaps in the table indicated elements that were yet to be discovered. By observing the patterns in the properties of known elements within each group, Mendeleev was able to predict the properties of the undiscovered elements that would fill these gaps.
Mendeleev's periodic table allowed for the prediction of the properties of unknown elements by identifying gaps in the table where elements had not yet been discovered. By examining the properties of neighboring elements, Mendeleev was able to predict the properties of the missing elements and suggest their existence. His periodic table provided a framework for organizing elements based on their atomic mass and chemical properties, which allowed for the accurate prediction of the properties of undiscovered elements.
Mendeleev predicted the existence and properties of germanium by leaving gaps in his periodic table for elements that had not yet been discovered. He correctly deduced the properties of the missing element based on the pattern of elements around its position in the table. When germanium was discovered, its properties closely matched Mendeleev's predictions, confirming the validity of his periodic table.
Mendeleev discovered gaps in his periodic table where elements should logically fit based on their properties and atomic weights. He predicted that these missing elements would eventually be discovered because there were clear patterns in the properties of known elements that suggested the existence of undiscovered elements to complete the table.
Mendeleev left gaps for undiscovered elements. He predicted their properties which were found to be accurate later.
Mendeleev did not predict the properties of silicon.
because,he predicted some possible chemical formulas of the then undiscovered elements between the elements in his periodic table. so he concluded that more elements with specific properties would be discovered.
He was able to work out the atomic mass of the missing elements, and so predict their properties. And when they were discovered, Mendeleev turned out to be right. For example, he predicted the properties of an undiscovered element that should fit below aluminium in his table. When this element, called gallium, was discovered in 1875, its properties were found to be close to Mendeleev's predictions. Two other predicted elements were later discovered, lending further credit to Mendeleev's table.