First of all I think that the phrase 'twice as many' is erroneous. A scattering through an angle of 90' or more is a rare event.
You must understand that an atom is mostly empty space. The effective area of the atomic nucleus is very small compared to the area maintained by the electrons. An alpha particle is scattered by 90' or more only when it makes a very close encounter with the atomic nucleus. As the probability of actually coming close to a nucleus is small, the resulting reactions is also small.
Thomson scattering helps us understand how electromagnetic radiation interacts with charged particles by showing how the radiation is scattered when it encounters these particles. This scattering process provides valuable information about the properties of the particles and the nature of the interaction between them and the radiation.
Neutron-proton scattering refers to the interaction between a neutron and a proton. It involves the exchange of a virtual meson between the two particles, which allows them to interact through the strong nuclear force. Studying neutron-proton scattering can provide valuable information about the structure and interactions of the atomic nucleus.
Mie scattering occurs when particles are larger than the wavelength of light, causing light to scatter in all directions equally. Rayleigh scattering happens when particles are smaller than the wavelength of light, leading to shorter wavelengths being scattered more than longer ones.
Because it was something they could get very thin. They wanted to see how atoms interacted with each other... because if some got through and some didn't it would mean there were a lot of spaces between the atoms, but if the foil was too thick it would defeat the purpose.
Raman scattering and Rayleigh scattering are both types of light scattering, but they differ in how they interact with molecules. Rayleigh scattering occurs when light interacts with particles smaller than the wavelength of light, causing the light to scatter in all directions. Raman scattering, on the other hand, involves a change in the energy of the scattered light due to interactions with molecular vibrations. This results in a shift in the wavelength of the scattered light, providing information about the molecular structure of the material.
Collision refers to a direct physical interaction between particles that leads to a change in their paths or states, such as when two particles collide and merge or bounce off each other. Scattering, on the other hand, refers to a process where particles are deflected or redirected from their original path due to interactions, but without a direct collision occurring, such as when light is scattered by particles in the atmosphere.
Scattering process refers to the interaction between particles or waves that result in a change in direction or energy. This can occur when particles collide or interact with a medium, causing them to change their path or lose energy. Scattering processes are fundamental in understanding the behavior of particles in various physical systems.
absorption: having a change in energy from source to the receiver by its medium scattering by particles: occurs without a change in energy, but results in a change in direction of propagation
Coherent scattering is a process in which incoming radiation interacts with a material in a way that maintains the phase relationship between the scattered waves. This results in constructive interference and a distinct pattern of scattering. In contrast, incoherent scattering involves interactions that do not maintain the phase relationship, leading to random scattering directions and no specific pattern.
The scattering angles would have changed, but the qualitative results would also change: the reason Rutherford chose gold was because it is EXTREMELY malleable. One can stretch gold foil until it is only a few atoms thick in places, which is not possible with aluminum. If the foil were too thick, there would be no transmission of particles at all; the whole point was to demonstrate that most alpha particles passed through unchanged, but some of them scattered, which is only possible with a VERY thin foil.
Rayleigh scattering occurs when particles are much smaller than the wavelength of light, leading to scattering in all directions and a strong dependency on the fourth power of the inverse of the wavelength. Mie scattering, on the other hand, involves particles that are similar in size to the wavelength of light, leading to scattering across a wide range of angles and less dependency on the wavelength.
Rayleigh scattering occurs when light interacts with particles that are much smaller than the wavelength of the light, such as molecules in the atmosphere. This type of scattering is more effective for shorter wavelengths, like blue light, which is why the sky appears blue. Mie scattering, on the other hand, occurs when light interacts with particles that are similar in size to the wavelength of the light, such as dust or water droplets in the atmosphere. Mie scattering is more effective for longer wavelengths, like red light, which is why sunsets appear red. In summary, Rayleigh scattering is more prominent for smaller particles and shorter wavelengths, while Mie scattering is more prominent for larger particles and longer wavelengths.