volume
The conclusion of the Archimedes principle is simply that the upward buoyant force that is experienced by a body immersed in a fluid, is equivalent to the weight of the fluid that the body displaces. This allows the volume of an object to be measured by measuring the volume of liquid it displaces after submerging. For any immersed object, the volume of the submerged portions equals the volume of fluid it displaces.
The object will sink in the fluid.
Then the object will sink.
an object is immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. This became known as Archimede's principle. The weight of the displaced fluid can be found mathematically. The fluid displaced has a weight W = mg. The mass can now be expressed in terms of the density and its volume, m = pV. Hence, W = pVg.
TRUE
The buoyant force on a submerged object depends on the volume of the object. It is equal to the weight of the fluid displaced by the object, which is determined by its volume. The weight of the object itself affects the net force experienced by the object when submerged.
It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.
No, the weight of an object immersed in a liquid does not affect the buoyant force on the object. The buoyant force is solely determined by the volume of the displaced liquid. The weight of the object affects the net force experienced by the object in the liquid.
The buoyant force is equal to the weight of the liquid displaced by the object. When an object floats in a liquid, it displaces a volume of liquid equal to its own volume, and the buoyant force acting on the object is equal to the weight of this displaced liquid, which is equal to the weight of the object. This is why the object stays afloat.
In the general case, these are quite unrelated; the buoyant force is related to the object's volume, not its weight. Or the part of the volume that is submerged in the liquid or gas. However, if the object is freely floating, then the buoyant force will be equal to its weight.
The buoyant force on a floating object depends on the weight of the fluid displaced by the object, not on the weight of the object itself. This is known as Archimedes' principle.
The buoyant force acting on an object submerged in water is equal to the weight of the water displaced by the object. The volume of water displaced is directly proportional to the buoyant force, meaning that the greater the volume of water displaced, the greater the buoyant force acting on the object.
To find the buoyant force acting on an object submerged in a fluid, use the formula: Buoyant force = weight of the fluid displaced by the object. The volume immersed can be calculated by dividing the weight of the object by the density of the fluid and the acceleration due to gravity.
That completely depends on the object's volume (which you have not mentioned). The buoyant force on it is equal to the weight of an equal volume of water.
No, the buoyant force on an object depends on its volume and density compared to the fluid it is in, not mass or surface area. Objects displace an amount of fluid equal to their volume, causing an upward buoyant force that is equal to the weight of the fluid displaced.
Archimedes' principle states that the buoyant force acting on an object in a fluid is equal to the weight of the fluid displaced by the object. This means that the volume of the fluid displaced by the object directly influences the buoyant force experienced by the object; the greater the volume of fluid displaced, the greater the buoyant force acting on the object.
The buoyant force on a massless object is equal to the weight of the fluid displaced by the object. This is because the buoyant force depends on the volume of fluid displaced, not the mass of the object.