After 2 half-lives (two half-lives of tritium is 12.32 x 2 = 24.64 years), the initial 10g sample of tritium would have decayed by half to 5g.
After 50 years, approximately 50% of tritium will remain undecayed in a sample. Tritium has a half-life of about 12.3 years, which means that the amount of undecayed tritium decreases by half every 12.3 years.
The half-life of the radioisotope tritium (H-3) is about 12.32 years. This means that it takes approximately 12.32 years for half of a sample of tritium to decay into helium-3.
If I take a radioactive sample of 400 moles of an unknown substance and let it decay to the point of three half-lives I would have 50 moles left of the sample. 1/2 of what is left will decay in the next half-life. At the end of that half-life I will have 25 moles left of the unknown substance or 4/25.
After 61.5 years, five half-lives would have passed for tritium (12.3 years x 5 = 61.5 years). Each half-life reduces the amount of radioactive material by half. Therefore, after 61.5 years, 3.125% (0.5^5) of the initial 118mg of tritium would remain radioactive.
The half-life of tritium is about 12.3 years, meaning it takes that much time for half of the tritium to decay. However, tritium can persist in the environment for a longer time due to its constant formation in the upper atmosphere and mixing in with water sources.
After 50 years, approximately 50% of tritium will remain undecayed in a sample. Tritium has a half-life of about 12.3 years, which means that the amount of undecayed tritium decreases by half every 12.3 years.
The half-life of the radioisotope tritium (H-3) is about 12.32 years. This means that it takes approximately 12.32 years for half of a sample of tritium to decay into helium-3.
After 5 half-lives, 3.125% (or 1/2^5) of a radioactive sample remains. Each half-life reduces the sample by half, so after 5 half-lives, there is only a small fraction of the original sample remaining.
After 2 half lives, 25% of the original radioactive sample remains unchanged. This is because half of the sample decays in each half life, so after 1 half life, 50% has decayed, and after 2 half lives, another 50% has decayed, leaving 25% unchanged.
If 12.3 years is the half-life of Tritium (H-3), then @ 12.3 years only half of the tritium should remain or 4 grams.
An eighth remains.
One half life.
If I take a radioactive sample of 400 moles of an unknown substance and let it decay to the point of three half-lives I would have 50 moles left of the sample. 1/2 of what is left will decay in the next half-life. At the end of that half-life I will have 25 moles left of the unknown substance or 4/25.
After three half-lives, only 1/8 (or 12.5%) of the original radioactive sample remains. This is because each half-life reduces the amount of radioactive material by half, so after three half-lives, you would have (1/2) * (1/2) * (1/2) = 1/8 of the original sample remaining.
The half-life of tritium is 12.32 years (12 years 3 months and 26-ish days).
1/16 of the original sample of any unstable element remains after 4 half lives.
A half-life is the amount of time it takes for half of the material to decay. So if you started with 80g After 1 half-life you would have 40 g After 2 half-lives you would have 20 g After three half-lives you would have 10 g