answersLogoWhite

0

a chemically gated channel

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Natural Sciences

What does the neurotransmitter bind to after it moves across the synaptic cleft?

The neurotransmitter binds to specific receptors on the postsynaptic neuron's membrane. This binding triggers a series of events that can either excite or inhibit the postsynaptic neuron, ultimately influencing its activity.


Where are the receptors for neurotransmitters located?

Neurotransmitter receptors are located on the postsynaptic membrane of neurons. When a neurotransmitter binds to its specific receptor, it can either excite or inhibit the postsynaptic neuron, thereby influencing the transmission of signals in the brain.


The sites where a chemical substance is transmitted from the presynaptic terminal of an axon to the postsynaptic membrane of a muscle fiber are called?

The sites where a chemical substance is transmitted from the presynaptic terminal of an axon to the postsynaptic membrane of a muscle fiber are called neuromuscular junctions. At these junctions, the neurotransmitter acetylcholine is released from the presynaptic terminal and binds to receptors on the postsynaptic membrane, initiating muscle contraction.


What a neurotransmitter is?

A neurotransmitter is a chemical or peptide in synapses, usually between neurons, a neuron and muscle or a neuron and other organ. The neurotransmitter transmits information to and from and within the brain. When a neurotransmitter is released from the presynaptic cell in response to depolarization of the cell by an action potential, it diffuses across the synaptic cleft and binds a receptor or ligand-gated ion channel on the postsynaptic cell. Binding on the postsynaptic cell alters the resting potential of the postsynaptic cell in either an inhibitory or excitatory manner, making the cell less susceptible or more susceptible (respectively) to an action potential. Examples include, but are not limited to, acetylcholine, GABA, noradrenaline, serotonin and dopamine.


What is depolarization of a neurotransmitter?

Depolarization of a neurotransmitter refers to the shift in the electrical charge of the neuron, making it more likely to generate an action potential. This can occur when a neurotransmitter binds to its receptor on the postsynaptic membrane, causing ion channels to open and allowing the influx of positively charged ions. This depolarization triggers a series of events that lead to the transmission of the nerve signal.

Related Questions

The effect of a neurotransmitter on the postsynaptic cell occurs when the neurotransmitter?

binds to specific receptors on the postsynaptic cell membrane, leading to changes in the cell's membrane potential. This can either excite or inhibit the postsynaptic neuron, influencing the likelihood of an action potential being generated. Ultimately, the effect of the neurotransmitter can influence the communication between neurons in the nervous system.


What does the neurotransmitter bind to after it moves across the synaptic cleft?

The neurotransmitter binds to specific receptors on the postsynaptic neuron's membrane. This binding triggers a series of events that can either excite or inhibit the postsynaptic neuron, ultimately influencing its activity.


Where are the receptors for neurotransmitters located?

Neurotransmitter receptors are located on the postsynaptic membrane of neurons. When a neurotransmitter binds to its specific receptor, it can either excite or inhibit the postsynaptic neuron, thereby influencing the transmission of signals in the brain.


The sites where a chemical substance is transmitted from the presynaptic terminal of an axon to the postsynaptic membrane of a muscle fiber are called?

The sites where a chemical substance is transmitted from the presynaptic terminal of an axon to the postsynaptic membrane of a muscle fiber are called neuromuscular junctions. At these junctions, the neurotransmitter acetylcholine is released from the presynaptic terminal and binds to receptors on the postsynaptic membrane, initiating muscle contraction.


What a neurotransmitter is?

A neurotransmitter is a chemical or peptide in synapses, usually between neurons, a neuron and muscle or a neuron and other organ. The neurotransmitter transmits information to and from and within the brain. When a neurotransmitter is released from the presynaptic cell in response to depolarization of the cell by an action potential, it diffuses across the synaptic cleft and binds a receptor or ligand-gated ion channel on the postsynaptic cell. Binding on the postsynaptic cell alters the resting potential of the postsynaptic cell in either an inhibitory or excitatory manner, making the cell less susceptible or more susceptible (respectively) to an action potential. Examples include, but are not limited to, acetylcholine, GABA, noradrenaline, serotonin and dopamine.


What is depolarization of a neurotransmitter?

Depolarization of a neurotransmitter refers to the shift in the electrical charge of the neuron, making it more likely to generate an action potential. This can occur when a neurotransmitter binds to its receptor on the postsynaptic membrane, causing ion channels to open and allowing the influx of positively charged ions. This depolarization triggers a series of events that lead to the transmission of the nerve signal.


How does a neurotransmitter cause an action potential in a receiving neuron?

A neurotransmitter binds to specific receptors on the postsynaptic membrane of a receiving neuron, leading to the opening of ion channels. This causes an influx of positively charged ions, such as sodium (Na+), which depolarizes the membrane. If the depolarization reaches a certain threshold, it triggers an action potential by opening voltage-gated sodium channels, allowing further sodium influx and propagating the electrical signal along the neuron.


What is the neurotransmitter used at the neuro muscular junction is?

The neurotransmitter used at the neuromuscular junction is acetylcholine. It is released from the motor neuron terminals and binds to receptors on the muscle cell membrane, leading to muscle contraction.


Into what does the neuron release its neurotransmitter at the neuromuscular junction?

The neuron releases its neurotransmitter into the synaptic cleft at the neuromuscular junction, which is the gap between the neuron terminal and the muscle cell. This neurotransmitter then binds to receptors on the muscle cell membrane, triggering muscle contraction.


Binding of neurotransmitter to the receptors on the motor endplate open?

When a neurotransmitter binds to its receptor on the motor endplate, it triggers the opening of ion channels in the postsynaptic membrane. This allows for the influx of ions, typically leading to depolarization of the muscle cell membrane and initiation of a muscle action potential. Subsequently, this leads to contraction of the muscle fiber.


When a neuron responds to a particular neurotransmitter by opening gated ion channels the neurotransmitter is serving as which part of the signal pathway?

The neurotransmitter functions as the ligand that binds to the receptor on the neuron's membrane, causing a conformational change that opens the ion channels. This allows ions to flow into or out of the neuron, resulting in a change in its membrane potential and ultimately transmitting the signal.


Neurotransmitter substance released at motor end plates by the motor neuron?

The neurotransmitter released at motor end plates by motor neurons is acetylcholine. It binds to receptors on the muscle cell membrane, leading to muscle contraction.