answersLogoWhite

0

The acceleration of a freely falling object is approximately 9.81 m/s^2, directed downwards towards the center of the Earth. Therefore, the acceleration of the object 2 seconds after being released will still be 9.81 m/s^2, assuming no other forces are acting on it.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What is the answer to this Freely falling bodies undergo what acceleration?

Freely falling bodies undergo acceleration due to gravity, which is approximately 9.81 m/s^2 on Earth. This acceleration causes the speed of the falling object to increase as it falls towards the ground.


How equation of motion are modified for freely falling objects?

For freely falling objects, the equation of motion is modified to account only for the effects of gravity. The equation becomes: y = 0.5gt^2, where y is the height of the object at time "t" in seconds, and "g" is the acceleration due to gravity (approximately 9.8 m/s^2). Friction and other forces are typically ignored in these scenarios.


What is the velocity of freely falling objects 5 seconds after being dropped?

The velocity of a freely falling object 5 seconds after being dropped is approximately 49 meters per second (m/s) downwards. This is the velocity an object reaches due to the acceleration of gravity (9.8 m/s^2) acting on it.


What is constant for freely falling body?

The acceleration due to gravity is constant for a freely falling body. This means that the object will experience a constant acceleration of 9.81 m/s^2 (on Earth) in the downward direction, regardless of its mass. This allows us to predict the motion of the object using equations of motion.


What is speed of a freely falling object ten seconds after starting from rest?

The speed of a freely falling object 10 seconds after starting from rest is approximately 98 m/s. This is because in free fall, the acceleration due to gravity is approximately 9.8 m/s^2, so after 10 seconds, the object would have reached a speed of 98 m/s.

Related Questions

What is the direction of the acceleration of a freely falling body?

9.8 m/s2


If a ball that is freely falling has attained a velocity of 19.6 meters per second after 2 seconds. What is its velocity five seconds later?

A freely falling Ball has the acceleration of 9.8 m/s/s so after 5 seconds its velocity will be: t=5s a=9.8m/s/s v=5s * 9.8m/s/s =49 m/s


What is freely body?

A freely body is the body which is freely falling under the force of gravity i.e. an acceleration of 9.8 m/s2


What is the answer to this Freely falling bodies undergo what acceleration?

Freely falling bodies undergo acceleration due to gravity, which is approximately 9.81 m/s^2 on Earth. This acceleration causes the speed of the falling object to increase as it falls towards the ground.


How equation of motion are modified for freely falling objects?

For freely falling objects, the equation of motion is modified to account only for the effects of gravity. The equation becomes: y = 0.5gt^2, where y is the height of the object at time "t" in seconds, and "g" is the acceleration due to gravity (approximately 9.8 m/s^2). Friction and other forces are typically ignored in these scenarios.


What is the definition of free fall?

when the acceleration of the freely falling object is equal to the acceleration due to gravity then there occurs free fall.


What is the effect of distance of freely falling bodies from the centre of the earth on gravitational acceleration?

a nswer


What is the effect of distance of freely falling body from the centre of earth on gravitational acceleration?

a nswer


What is the velocity of freely falling objects 5 seconds after being dropped?

The velocity of a freely falling object 5 seconds after being dropped is approximately 49 meters per second (m/s) downwards. This is the velocity an object reaches due to the acceleration of gravity (9.8 m/s^2) acting on it.


What is constant for freely falling body?

The acceleration due to gravity is constant for a freely falling body. This means that the object will experience a constant acceleration of 9.81 m/s^2 (on Earth) in the downward direction, regardless of its mass. This allows us to predict the motion of the object using equations of motion.


What is speed of a freely falling object ten seconds after starting from rest?

The speed of a freely falling object 10 seconds after starting from rest is approximately 98 m/s. This is because in free fall, the acceleration due to gravity is approximately 9.8 m/s^2, so after 10 seconds, the object would have reached a speed of 98 m/s.


What is the example where acceleration is in the direction of non-uniform motion?

Freely falling body is a good example