according to the ideal gas equation , volume will be four time of initial value.
If the volume of a gas is tripled at constant temperature, according to Boyle's Law, the pressure of the gas will decrease by a factor of 3. This is because pressure and volume are inversely proportional at constant temperature.
Assuming the temperature remains constant, we can use Boyle's Law which states that pressure and volume are inversely proportional at constant temperature. If the volume is halved from 8.0 liters to 4.0 liters, the pressure will double from 70 kilopascals to 140 kilopascals.
In Boyle's law, the constant is the temperature of the gas. The variables are the pressure and volume of the gas. Boyle's law states that at a constant temperature, the pressure of a gas is inversely proportional to its volume.
If temperature remains constant and the volume of gas increases, the pressure will decrease. This is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is constant.
No, pressure is dependent on temperature. As temperature increases, the pressure of a gas also increases, assuming volume remains constant (Boyle's Law). If volume is not constant, then pressure and temperature are directly proportional (Charles's Law).
If the volume of the cylinder is reduced while the temperature remains constant, the pressure inside the cylinder will increase. This relationship is described by Boyle's Law, which states that pressure and volume are inversely proportional at constant temperature.
If the volume of a gas is tripled at constant temperature, according to Boyle's Law, the pressure of the gas will decrease by a factor of 3. This is because pressure and volume are inversely proportional at constant temperature.
The formula to calculate the gas cylinder volume for a given pressure and temperature is V (nRT)/P, where V is the volume of the gas cylinder, n is the number of moles of gas, R is the ideal gas constant, T is the temperature in Kelvin, and P is the pressure of the gas.
From Boyle's law pressure (P) times volume (V) divided by temperature T is a constant; so if T is held constant then if pressure triples volume is decreased to 1/3 its original value
BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature Answer BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature
Temperature increases as pressure increases.
Assuming the temperature remains constant, we can use Boyle's Law which states that pressure and volume are inversely proportional at constant temperature. If the volume is halved from 8.0 liters to 4.0 liters, the pressure will double from 70 kilopascals to 140 kilopascals.
As pressure increases, if temperature is constant, the gas will decrease in volume.
The pressure is reduced to one third of the original pressure. The pressure will stay the same you are only changing the volume
The pressure is reduced to one third of the original pressure. The pressure will stay the same you are only changing the volume
When a gas is heated in a cylinder, its temperature and pressure increase. As the gas molecules gain energy, they move faster and collide more frequently with the walls of the cylinder, causing an increase in pressure. If the volume of the gas is kept constant, then according to Charles's Law, the gas will expand to accommodate the increased temperature.
At constant temperature p.V=constant, so pressure INcreases when decreasing the volume.