answersLogoWhite

0

Is p a reflection of b?

Updated: 4/28/2022
User Avatar

Wiki User

11y ago

Best Answer

Lol basically yes :P

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is p a reflection of b?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is the product rule and the sum rule of probability?

Sum Rule: P(A) = \sum_{B} P(A,B) Product Rule: P(A , B) = P(A) P(B|A) or P(A, B)=P(B) P(A|B) [P(A|B) means probability of A given that B has occurred] P(A, B) = P(A) P(B) , if A and B are independent events.


How do you find P A given B?

P(A|B)= P(A n B) / P(B) P(A n B) = probability of both A and B happening to check for independence you see if P(A|B) = P(B)


Addition rule for probability of events A and B?

If they're disjoint events: P(A and B) = P(A) + P(B) Generally: P(A and B) = P(A) + P(B) - P(A|B)


Give the example of why probabilities of A given B and B given A are not same?

Let's try this example (best conceived of as a squared 2x2 table with sums to the side). The comma here is an AND logical operator. P(A, B) = 0.1 P(A, non-B) = 0.4 P(non-A, B) = 0.3 P(non-A, non-B) = 0.2 then P(A) and P(B) are obtained by summing on the different sides of the table: P(A) = P(A, B) + P(A, non-B) = 0.1 + 0.4 = 0.5 P(B) = P(A,B) + P(non-A, B) = 0.1 + 0.3 = 0.4 so P(A given B) = P (A, B) / P (B) = 0.1 / 0.4 = 0.25 also written P(A|B) P(B given A) = P (A,B) / P (A) = 0.1 / 0.5 = 0.2 The difference comes from the different negated events added to form the whole P(A) and P(B). If P(A, non-B) = P (B, non-A) then P(A) = P(B) and also P(A|B) = P(B|A).


Definition of additive law in probability?

This has to do with the union of events. If events A and B are in the set S, then the union of A and B is the set of outcomes in A or B. This means that either event A or event B, or both, can occur. P(A or B) = P(A) + P(B) - P(A and B) **P(A and B) is subtracted, since by taking P(A) + P(B), their intersection, P(A and B), has already been included. In other words, if you did not subtract it, you would be including their intersection twice. Draw a Venn Diagram to visualize. If A and B can only happen separately, i.e., they are independent events and thus P(A and B) = 0, then, P(A or B) = P(A) + P(B) - P(A and B) = P(A) + P(B) - 0 = P(A) + P(B)

Related questions

If A and B are independent events then are A and B' independent?

if P(A)>0 then P(B'|A)=1-P(B|A) so P(A intersect B')=P(A)P(B'|A)=P(A)[1-P(B|A)] =P(A)[1-P(B)] =P(A)P(B') the definition of independent events is if P(A intersect B')=P(A)P(B') that is the proof


What is the product rule and the sum rule of probability?

Sum Rule: P(A) = \sum_{B} P(A,B) Product Rule: P(A , B) = P(A) P(B|A) or P(A, B)=P(B) P(A|B) [P(A|B) means probability of A given that B has occurred] P(A, B) = P(A) P(B) , if A and B are independent events.


What does a line reflection not preserve?

A reflection in a line l is a correspondence that pairs each point in the plane and not on the linewith point P' such that l is the perpendicular bisector of segment PP'. IF P is on l then P is paired with itself ... Under a reflection the image is laterally inverted. Thus reflection does NOT preserve orientation...


How do you find P A given B?

P(A|B)= P(A n B) / P(B) P(A n B) = probability of both A and B happening to check for independence you see if P(A|B) = P(B)


Addition rule for probability of events A and B?

If they're disjoint events: P(A and B) = P(A) + P(B) Generally: P(A and B) = P(A) + P(B) - P(A|B)


How do you find the coordinates of a quadrilateral after reflecting it over the y axis?

If the coordinates of a point, before reflection, were (p, q) then after reflection, they will be (-p, q).


Give the example of why probabilities of A given B and B given A are not same?

Let's try this example (best conceived of as a squared 2x2 table with sums to the side). The comma here is an AND logical operator. P(A, B) = 0.1 P(A, non-B) = 0.4 P(non-A, B) = 0.3 P(non-A, non-B) = 0.2 then P(A) and P(B) are obtained by summing on the different sides of the table: P(A) = P(A, B) + P(A, non-B) = 0.1 + 0.4 = 0.5 P(B) = P(A,B) + P(non-A, B) = 0.1 + 0.3 = 0.4 so P(A given B) = P (A, B) / P (B) = 0.1 / 0.4 = 0.25 also written P(A|B) P(B given A) = P (A,B) / P (A) = 0.1 / 0.5 = 0.2 The difference comes from the different negated events added to form the whole P(A) and P(B). If P(A, non-B) = P (B, non-A) then P(A) = P(B) and also P(A|B) = P(B|A).


Do all figures with rotational symmetry also have reflection symmetry?

No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.


What is the formula for inclusive events?

P(a or b)= p(a)+p(b) - p(a and b)


Definition of additive law in probability?

This has to do with the union of events. If events A and B are in the set S, then the union of A and B is the set of outcomes in A or B. This means that either event A or event B, or both, can occur. P(A or B) = P(A) + P(B) - P(A and B) **P(A and B) is subtracted, since by taking P(A) + P(B), their intersection, P(A and B), has already been included. In other words, if you did not subtract it, you would be including their intersection twice. Draw a Venn Diagram to visualize. If A and B can only happen separately, i.e., they are independent events and thus P(A and B) = 0, then, P(A or B) = P(A) + P(B) - P(A and B) = P(A) + P(B) - 0 = P(A) + P(B)


What are the coordinates of the reflection of (a b) over the y-axis?

They are (-a, b).


Formulas on Percentage Base and Rate?

P=B×RB=P÷RR=P÷B