Greater. Since force is directly proportional to the change in momentum, the longer a force acts on an object, the greater the change in its momentum.
When you want to change an object's velocity, you have to overcome its inertia. Inertia is the tendency of an object to resist changes in its motion. By applying a force to the object, you can overcome this resistance and change its velocity.
Inertia in physics is generally defined as resistance to change in velocity and it is measured as a change in momentum. (p is momentum, so change in momentum would be Δp, measured as Δp = m*Δv)
Inertia can be overcome by applying an external force to an object. The greater the force applied, the quicker the object's inertia can be overcome. Once the external force is greater than the object's inertia, it will begin to move or change its speed/direction.
Newtons First Law of Motion states that an object with a given momentum will continue to posses that same momentum until the object is acted on by a force in which case it will undergo a change in momentum. Inertia is a measure of an objects tendency to resist a change in momentum. Massive bodies have a large inertia. If a massive body is in motion its momentum is given by the product of the mass and the velocity of that body. Newtons first law says that if a force acts on this body its momentum will change. But since the body has a large inertia this change is small. For example, if a small space pebble collides with a large asteroid that has a constant velocity and thus constant momentum, the force is small relative to the inertia of the asteroid so the momentum only changes a little bit.
Momentum is the measure of an object's motion, taking into account its mass and velocity. Inertia, on the other hand, is an object's resistance to changes in its motion. Momentum affects how easily an object can change its motion, while inertia determines how difficult it is to change the object's state of motion.
When you want to change an object's velocity, you have to overcome its inertia. Inertia is the tendency of an object to resist changes in its motion. By applying a force to the object, you can overcome this resistance and change its velocity.
I guess that momentum is part of the inertia, inertia is composed of momentum as the pages are related to the book. Inertia will be different if it has different kind of momentum. Force will affect momentum so inertia will change.
Inertia in physics is generally defined as resistance to change in velocity and it is measured as a change in momentum. (p is momentum, so change in momentum would be Δp, measured as Δp = m*Δv)
Inertia and Momentum in FootballInertia is a mass's resistance to changes in its momentum. Objects that have greater mass have greater inertia, so they are more difficult to move when they are at rest and more difficult to stop when they are moving. A 320-pound NFL nose-tackle has lots of inertia. A runt like me who weighs a buck fifty and change, not so much. The nose-tackle is gonna be hard to move out of the way, so blocking him will be difficult. And if a running back carrying the ball runs into him, the play might end right then and there. If he ran into me, well, let's say that he would easily overcome my inertia, knock me into next week, and take it to the house.Which brings us to momentum. Momentum is also related to mass, but it is also related to velocity. If an object is at rest, it has zero momentum. A moving object, however, has momentum. Double the speed and you double the mo. Triple the speed, triple the mo. If a running back runs fast, he will build up momentum. He can use that momentum to overcome another player's inertia. If he runs into the nose-tackle, he'll need lotsa mo to overcome his inertia. If he runs into me, he won't need much.Just to complicate this a bit, an object with momentum has kinetic energy, and energy can be used to do work. To do work you must apply a force, and it's that force that can change another object's momentum. Since mass can't change, it stands to reason that velocity must change. So when the running back picks up a head of steam and plows into me, he's gonna change my momentum in a big way. I'm gonna go flying like a little kid's rag doll.
An object with more momentum will have more inertia. Inertia is the ability to resist a change in force; objects with higher masses and higher speeds will have greater inertia. Speed * mass = momentum
Inertia can be overcome by applying an external force to an object. The greater the force applied, the quicker the object's inertia can be overcome. Once the external force is greater than the object's inertia, it will begin to move or change its speed/direction.
Newtons First Law of Motion states that an object with a given momentum will continue to posses that same momentum until the object is acted on by a force in which case it will undergo a change in momentum. Inertia is a measure of an objects tendency to resist a change in momentum. Massive bodies have a large inertia. If a massive body is in motion its momentum is given by the product of the mass and the velocity of that body. Newtons first law says that if a force acts on this body its momentum will change. But since the body has a large inertia this change is small. For example, if a small space pebble collides with a large asteroid that has a constant velocity and thus constant momentum, the force is small relative to the inertia of the asteroid so the momentum only changes a little bit.
Momentum is the measure of an object's motion, taking into account its mass and velocity. Inertia, on the other hand, is an object's resistance to changes in its motion. Momentum affects how easily an object can change its motion, while inertia determines how difficult it is to change the object's state of motion.
Inertia of motion is the resistance mass has to motion. It also is the resistance in change in momentum. Momentum includes two things: velocity and direction. When an object changes its velocity, the momentum of the object resists the change. Also, when an object does change its velocity, its momentum is directly changed. In general, the inertia of motion is matter's unwillingness to change velocity or momentum.
Inertia is directly proportional to an objects mass. Inertia is the desire of objects to continue doing exactly what they are doing. The greater the mass the greater the inertia.
Increased its velocity. By not changing its mass (inertia) and increasing its momentum, the only variable left to change is velocity in the equation momentum = mass x velocity.
Inertia is the resistance of an object to changes in its state of motion, while momentum is a measure of an object's motion. Inertia is a property of matter that affects how much momentum an object has for a given velocity. An object with more inertia will require more force to change its momentum.