Force - yes - a crowbar
Distance - yes - high gear on a bicycle
Energy - no.
Yes, a machine can multiply input force by input distance to increase input energy. This concept is known as mechanical advantage, where the machine amplifies the input force to output more energy than what was initially supplied.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
You can calculate the mechanical advantage of the machine.
Yes, mechanical advantage is calculated by dividing the output force by the input force. It provides a measure of how much a machine can multiply force or distance.
The quantity that measures how much a machine multiplies force or distance is known as mechanical advantage. It is calculated as the ratio of the output force to the input force, or the ratio of the input distance to the output distance in a machine.
yes. yes. no
Yes, a machine can multiply input force by input distance to increase input energy. This concept is known as mechanical advantage, where the machine amplifies the input force to output more energy than what was initially supplied.
That depends on whether the machine is designed to multiply force or distance. A machine designed to multiply distance will exert less force than was applied, and a machine designed to multiply force will exert the greater force over a shorter distance than force was applied to it. As for work, output work is always less than input work because some energy is lost in overcoming friction.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
You can calculate the mechanical advantage of the machine.
Yes, mechanical advantage is calculated by dividing the output force by the input force. It provides a measure of how much a machine can multiply force or distance.
The quantity that measures how much a machine multiplies force or distance is known as mechanical advantage. It is calculated as the ratio of the output force to the input force, or the ratio of the input distance to the output distance in a machine.
Type your answer here... The actual mechanical advantage.
Does not multiply energy. Work done or energy used (force * distance) remains the same at both ends. Force or torque can be increased or decreased depending on mechanical advantage. It can change the direction of the force or torque.
Yes, mechanical advantage can be calculated by dividing the output distance by the input distance. This ratio indicates how much a machine multiplies the input force.
In an ideal machine, if you exert an input force over a greater distance than the output force, the input force will be smaller than the output force. This is because work input is equal to work output in an ideal machine, and work is calculated as force times distance. Therefore, if the input force acts over a greater distance, the output force must be larger to balance the work done.
In an ideal machine, the input force will be smaller than the output force when the input force is exerted over a greater distance than the output force. This is because work input and work output must be equal in an ideal machine, and since work = force x distance, a smaller input force over a greater distance will result in a larger output force over a shorter distance to maintain equilibrium.