answersLogoWhite

0


Best Answer

The total effecive resistance of several individual resistances in parallel is less than

the smallest individual resistance, so in that sense I guess you'd have to say that

the lowest resistance 'dominates' the character of the whole parallel circuit.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does the highest or lowest resistance dominate a parallel circuit?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

How does the total resistance in a system change when additional resistance is added in series?

Sneighke answered: This discussion adds to the original question There are two types of resistance topologies: 1) Series and 2) parallel. To answer your question, resistance added in series always ADD together increasing the total resistance of the circuit. Conversely, adding parallel resistance reduces the total resistance of the circuit. So, for series circuits, R(total) = R1+R2+...Rx Parallel circuits are the exact mathematical inverse. The easiest way to determine parallel resistance is to add the inverse of resistance which is conductance, conductance being 1/r and is stated in Siemens (hold the jokes!...), then taking the inverse of the total conductance to convert back into Ohms. For example, if you have three resistors R1, R2, and R3, and they are parallel connected, the total resistance of the circuit is the inverse of the sum of conductance which would be written as 1 / (1/r1+1/r2+1/r3). By definition, conductance is the inverse of resistance. An example: Given three resistors of 5, 100, and 500 Ohms, In series, R(total) = 5+100+500 = 605 Ohms. In parallel, the total is always less than the lowest resistor: Converting to conductance (used to be called Mhos which is "Ohm" backwards, but has been replaced with the SI unit of Siemens): 5, 100, and 500 Ohms = 1/5+1/100+1/500 = 0.200+0.010+0.002 = 0.212 Siemens. Converting back into resistance, 1/conductance = 1/0.212 Siemens = 4.717 Ohms which as stated above, is less than the lowest resistance resistor. In fact, sometimes working with conductance is easier in series/parallel circuits and, in particular, calculating which values of resistors are required to yield a desired resistance; usually a non-standard resistance value needed for a specific purpose in a circuit. An example: Say you need a non-standard resistance of 698 Ohms. Since we know that parallel resistors create a value lower than the lowest parallel connected resistor, you would start with the next highest standard value and then add a parallel resistor to get you what you need. In this case, you would subtract the desired conductance from the starting resistor: 698 Ohms = 1/698 = 0.001427 Siemens or 1.4327 milliSiemens. If we had a standard value resistor of 750 Ohms (remember, you have to start higher): 750 Ohms = 1.3333 mS. To find the required parallel resistor to get us our 698 Ohms, subtracting the conductances 1.4327mS-1.333mS = 99.33uS (micro Siemens) [0.00009933 S]. Converting back into Ohms, 1/99.33uS = 10.07kOhms (10,070 Ohms) which is close to the standard value of 10kOhms. Doublechecking, Add the conductances: 10,000 Ohms = 100uS 750 Ohms = 1.3333mS Adding gives a total conductance of 1.4333mS. Thus the parallel equivalent = 1/Siemens = 1/0.0014333 = 697.7 Ohms which is within 0.04% of the 698 Ohms we need which is well within acceptable error and we have our 698 Ohm resistor by connecting 10,000 Ohms and 750 Ohms in parallel.


Equation for Resistor serial and parallel?

In series, you just add the resistor values together to find the total resistance. In parallel you can use the following equation you can find the total resistance by multiplying the lowest and highest resistor value, the dividing that by the sum of all the resistor values you have in parallel. you could also take the inverse of all the inverses of you resistor values added together.


What is the use of series and parallel resonance?

Series resonant circuits have their lowest impedance at the resonant frequency. Parallel resonant circuits have their highest impedance at the resonant frequency. This characteristic is exploited in the design of filters, oscillators and other circuits.


If you have 2 5-watt bulbs connected in series and then in parallel which circuit arrangement will give you brighter bulbs?

It depends on the voltage rating of each lamp, and the value of the supply voltage. It's important to understand that a lamp will only operate at its rated power (therefore at its full brightness) when subject to its rated voltage.So, let's assume each lamp is rated at, say, 24 V.If connected in parallel across a 24-V supply, then they will both operate of full brightness.If connected in series across the same 24-V supply, then each lamp will be subject to half its rated voltage, and will be very dim.On the other hand, if connected in series across a 48-V supply, then they will each be subject to 24 V, and will both operate at full brightness.


What is short circuit voltage?

Short circuit voltage is the voltage that has to be applied to the primaries of a transformer, so that the nominal current flows through the secondaries, when they are shorted. This value is important, if transformer secondaries shall be used in parallel. Ideally all transformers with parallel secondaries should have the same short circuit voltage. When their short circuit voltages are different, the transformer with the lower short circuit voltage will be loaded more than their relationship of power ratings would predict. The short circuit voltage is also important in the design of a transformer, because it predicts, how much the secondary voltage will drop at nominal output current. This knowledge helps the designer to find out, how many further windings the secondary needs for a certain voltage in relation to an ideal transformer. Short circuit voltage is also known as impedance voltage.

Related questions

What will have the least amount of current flow in a branch parallel circuit?

The branch with the highest resistance in a parallel circuit will have the least current flow. Ohm's Law: Current = Voltage divided by Resistance


How does connecting devices in parallel affect the electric current in a circuit?

it doesn't, the one with the highest resistance does


What device has the smallest current in parallel circuit?

The one with the highest resistance (or impedance, if the voltage is not DC).


In a series circuit where is the most voltage dropped?

At the point of highest resistance.


What will happen if two dc sources are connected in parallel?

IF two dc sources are connected in parallel, the one with the highest potential dominates the circuit.


Which circuit would have the highest voltage series or parellel?

There's no correspoindence, correlation, or connection between those characteristics. A series circuit or a parallel circuit may have high or low voltages.


In what part of the circuit do the electric charges releases most of their energy?

The component with the highest resistance in a series circuit will have, or "drop" the most voltage across it. All of the components in a series circuit will have the same amount of current flowing through them but not the same voltage drops if the resistances are different. More resistance more voltage across it, less resistance, less voltage across it.


How does the total resistance in a system change when additional resistance is added in series?

Sneighke answered: This discussion adds to the original question There are two types of resistance topologies: 1) Series and 2) parallel. To answer your question, resistance added in series always ADD together increasing the total resistance of the circuit. Conversely, adding parallel resistance reduces the total resistance of the circuit. So, for series circuits, R(total) = R1+R2+...Rx Parallel circuits are the exact mathematical inverse. The easiest way to determine parallel resistance is to add the inverse of resistance which is conductance, conductance being 1/r and is stated in Siemens (hold the jokes!...), then taking the inverse of the total conductance to convert back into Ohms. For example, if you have three resistors R1, R2, and R3, and they are parallel connected, the total resistance of the circuit is the inverse of the sum of conductance which would be written as 1 / (1/r1+1/r2+1/r3). By definition, conductance is the inverse of resistance. An example: Given three resistors of 5, 100, and 500 Ohms, In series, R(total) = 5+100+500 = 605 Ohms. In parallel, the total is always less than the lowest resistor: Converting to conductance (used to be called Mhos which is "Ohm" backwards, but has been replaced with the SI unit of Siemens): 5, 100, and 500 Ohms = 1/5+1/100+1/500 = 0.200+0.010+0.002 = 0.212 Siemens. Converting back into resistance, 1/conductance = 1/0.212 Siemens = 4.717 Ohms which as stated above, is less than the lowest resistance resistor. In fact, sometimes working with conductance is easier in series/parallel circuits and, in particular, calculating which values of resistors are required to yield a desired resistance; usually a non-standard resistance value needed for a specific purpose in a circuit. An example: Say you need a non-standard resistance of 698 Ohms. Since we know that parallel resistors create a value lower than the lowest parallel connected resistor, you would start with the next highest standard value and then add a parallel resistor to get you what you need. In this case, you would subtract the desired conductance from the starting resistor: 698 Ohms = 1/698 = 0.001427 Siemens or 1.4327 milliSiemens. If we had a standard value resistor of 750 Ohms (remember, you have to start higher): 750 Ohms = 1.3333 mS. To find the required parallel resistor to get us our 698 Ohms, subtracting the conductances 1.4327mS-1.333mS = 99.33uS (micro Siemens) [0.00009933 S]. Converting back into Ohms, 1/99.33uS = 10.07kOhms (10,070 Ohms) which is close to the standard value of 10kOhms. Doublechecking, Add the conductances: 10,000 Ohms = 100uS 750 Ohms = 1.3333mS Adding gives a total conductance of 1.4333mS. Thus the parallel equivalent = 1/Siemens = 1/0.0014333 = 697.7 Ohms which is within 0.04% of the 698 Ohms we need which is well within acceptable error and we have our 698 Ohm resistor by connecting 10,000 Ohms and 750 Ohms in parallel.


When you compare 3 lamps in a series circuit to the same 3 lamps in a parallel circuit connected to the same 12-volt battery which statement is TRUE?

If a lamp burns out in parallel circuit, the other two lamps will continue to glow. If a lamp burns out in the series circuit, the other two lamps will also go out. If 3 lamps are in one series circuit, and one of them goes out, the loop is disconnected.


Which blood vessel offer most resistance to blood flow?

Arterioles generally have the highest resistance because they are so extremely small.


Equation for Resistor serial and parallel?

In series, you just add the resistor values together to find the total resistance. In parallel you can use the following equation you can find the total resistance by multiplying the lowest and highest resistor value, the dividing that by the sum of all the resistor values you have in parallel. you could also take the inverse of all the inverses of you resistor values added together.


Which part of the systemic circuit has the highest blood pressure?

The blood pressure is the highest in the arteries. It will decrease continuously as it flows through the systemic circuit.