This fusion gives off energy, which expands the surface of the star.
Gravity pulls the outer parts of a red giant towards the center.
The two main forces in a star are gravity and nuclear fusion. Gravity pulls matter inward, compressing it and creating the high pressure and temperature needed for nuclear fusion to occur. Nuclear fusion releases energy as light and heat, which counteracts the force of gravity trying to collapse the star.
Sort of - there energy released by the fusion occurring in the core of the star balances the force of gravity trying to make the star collapse inwards.As a star evolves this balance changes and the size of the star will change over time. When the material available for fusion runs out in the core, gravity wins the fight.
The two competing forces in a star are gravity, which tries to collapse the star under its own weight, and nuclear fusion, which generates energy and causes the star to expand outward. These forces balance each other to maintain a stable, long-lived star.
fusion of hydrogen atoms into helium atoms
Our Sun is the star that continues to use hydrogen for energy through nuclear fusion in its core. The heat generated from this fusion process creates outward pressure that balances the inward pull of gravity, allowing the Sun to remain stable and shine brightly.
The opposite force of gravity is the electromagnetic force. This force is responsible for interactions between charged particles such as electrons and protons, and it can either attract or repel these particles depending on their charges.
The two main forces in a star are gravity and nuclear fusion. Gravity pulls matter inward, compressing it and creating the high pressure and temperature needed for nuclear fusion to occur. Nuclear fusion releases energy as light and heat, which counteracts the force of gravity trying to collapse the star.
Gravity pushes and pulls on a star, balancing it out so it doesn't explode.
Sort of - there energy released by the fusion occurring in the core of the star balances the force of gravity trying to make the star collapse inwards.As a star evolves this balance changes and the size of the star will change over time. When the material available for fusion runs out in the core, gravity wins the fight.
A star is a luminous ball of plasma held together by its own gravity and produce energy through thermonuclear fusion. A planet is a body orbiting a star massive enough to be rounded by its own gravity but not massive enough to conduct fusion.
The two competing forces in a star are gravity, which tries to collapse the star under its own weight, and nuclear fusion, which generates energy and causes the star to expand outward. These forces balance each other to maintain a stable, long-lived star.
A star remains stable due to a balance between the force of gravity pulling inward and nuclear fusion reactions pushing outward. Gravity tries to collapse the star while nuclear fusion generates energy that pushes back, creating equilibrium and maintaining the star's stability.
The Rate of Fusion Increases
In a star a balance exist between gravity shrinking and expansion due to fusion energy released.
Gravity will cause a star to become smaller, because it pulls matter towards the star's core and causes it to contract. On the other hand, nuclear fusion will cause a star to become larger, because it produces an outward pressure, pushing the star's matter outwards and causing it to expand.
Simply put, there is such an amount of gravity that atoms fuse hence creating a lasting power
The energy released by fusion in the core of a star produces an outward pressured force that counteracts gravity. When fusion stops, that force goes away and gravity takes hold, causing the core to collapse.