answersLogoWhite

0

No of moles of atoms={total mass of substance(or)total mass of molecules }x#

gram molecular weight of one molecule

Where # =atomicity of molecule i.e no.of atoms in a molecule

ex: atomicity of co2=3 since there are three atoms in a co2 (c,o,o) molecule.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Chemistry

How many moles are in 2.16 10 to the 24 power atoms of iron?

To calculate the number of moles from the number of atoms, we need to divide the number of atoms by Avogadro's number (6.022 × 10^23), which gives 3.59 moles of iron atoms.


How many moles of silver atoms are in 1.8 x 10 25 atoms of silver?

To calculate the number of moles, you divide the number of atoms by Avogadro's number (6.022 x 10^23). So for 1.8 x 10^25 atoms of silver, the number of moles would be 30 moles.


Calculate the number of moles in 5.34 10 21 atoms of boron?

To calculate the number of moles, first calculate the molar mass of boron (B), which is approximately 10.81 g/mol. Then use the Avogadro's number (6.022 x 10^23) to convert the number of atoms to moles. So, moles = number of atoms / Avogadro's number = 5.34 x 10^21 / 6.022 x 10^23 ≈ 0.089 moles of boron.


How many grams atoms of sulfur are there in g of sulfur?

To determine the number of grams atoms of sulfur in a given mass of sulfur (g), you need to calculate the number of moles of sulfur first. Then, you can use Avogadro's number to convert moles to atoms. Finally, multiply the number of moles by Avogadro's number to find the number of atoms.


How many moles are represented by 4.70 x 1026 atoms of uranium?

To determine the number of moles, first calculate the number of moles in one mole of uranium using Avogadro's number (6.022 x 10^23 atoms/mol). Then, divide the given number of atoms by the number of atoms per mole to find that 4.70 x 10^26 atoms of uranium represents 7.81 moles.

Related Questions

How many moles are in 2.16 10 to the 24 power atoms of iron?

To calculate the number of moles from the number of atoms, we need to divide the number of atoms by Avogadro's number (6.022 × 10^23), which gives 3.59 moles of iron atoms.


How can you calculate no of moles from no of atoms?

To calculate the number of moles from the number of atoms, you can use Avogadro's number, which is approximately 6.022 x 10^23 atoms per mole. Divide the number of atoms by Avogadro's number to find the number of moles.


How many moles of PCl3 contain 3.68 1025 chlorine atoms?

To find the number of moles of PCl3, you need to first calculate the number of moles of Cl atoms in 3.68 * 10^25 atoms. There are 3 Cl atoms in each molecule of PCl3, so you divide the number of Cl atoms by 3 to get the number of moles of PCl3.


How many moles of silver atoms are in 1.8 x 10 25 atoms of silver?

To calculate the number of moles, you divide the number of atoms by Avogadro's number (6.022 x 10^23). So for 1.8 x 10^25 atoms of silver, the number of moles would be 30 moles.


Calculate the number of moles in 5.34 10 21 atoms of boron?

To calculate the number of moles, first calculate the molar mass of boron (B), which is approximately 10.81 g/mol. Then use the Avogadro's number (6.022 x 10^23) to convert the number of atoms to moles. So, moles = number of atoms / Avogadro's number = 5.34 x 10^21 / 6.022 x 10^23 ≈ 0.089 moles of boron.


Calculate the no of atom in 52 moles of helium?

To calculate the number of atoms in 52 moles of helium, you would use Avogadro's number, which is approximately 6.022 x 10^23 atoms per mole. Multiply the number of moles by Avogadro's number: 52 moles × 6.022 x 10^23 atoms/mole ≈ 3.13 x 10^25 atoms. Therefore, there are approximately 3.13 x 10^25 helium atoms in 52 moles.


How many grams atoms of sulfur are there in g of sulfur?

To determine the number of grams atoms of sulfur in a given mass of sulfur (g), you need to calculate the number of moles of sulfur first. Then, you can use Avogadro's number to convert moles to atoms. Finally, multiply the number of moles by Avogadro's number to find the number of atoms.


How many moles are represented by 4.70 x 1026 atoms of uranium?

To determine the number of moles, first calculate the number of moles in one mole of uranium using Avogadro's number (6.022 x 10^23 atoms/mol). Then, divide the given number of atoms by the number of atoms per mole to find that 4.70 x 10^26 atoms of uranium represents 7.81 moles.


How many atoms are their in 0.39 moles of Ga?

To find the number of atoms in 0.39 moles of Ga (gallium), you first need to calculate the number of moles in 0.39 moles of Ga. Then, you can use Avogadro's number (6.022 x 10^23) to convert moles to atoms. So, for Ga, there would be approximately 2.35 x 10^23 atoms in 0.39 moles of Ga.


How many atoms are in 3 moles of potassium nitrate?

To calculate the number of atoms in 3 moles of potassium nitrate (KNO3), you use Avogadro's number, which is 6.022 x 10^23 atoms/mol. First, calculate the molar mass of KNO3 (101.1 g/mol) then multiply that by 3 to get the total mass in grams. Next, divide the total mass by the molar mass to get the number of moles, and finally multiply the number of moles by Avogadro's number to get the number of atoms. For 3 moles of KNO3, there are approximately 5.4 x 10^24 atoms.


How many atoms are in 159g of calcium?

To find the number of atoms in 159g of calcium, you need to first calculate the number of moles of calcium present using the molar mass of calcium. The molar mass of calcium is approximately 40 g/mol. Then, you can use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles of calcium to atoms. Calculate the number of moles of calcium in 159g using the formula: moles = mass (g) / molar mass (g/mol). Finally, multiply the number of moles by Avogadro's number to determine the number of atoms in 159g of calcium.


How many moles is 2.80x1024 atoms in silicon?

To calculate the number of moles in 2.80x10^24 atoms of silicon, you first need to determine the molar mass of silicon, which is approximately 28.0855 g/mol. Next, you can use Avogadro's number, which is 6.022x10^23 atoms/mol, to convert atoms to moles. Divide the number of atoms by Avogadro's number to get the number of moles. Therefore, 2.80x10^24 atoms of silicon is equivalent to approximately 4.65 moles.