You arrange 12 toothpicks into a large square, subdivided into four squares : 2 toothpicks on each side and four more, one each from the middle of the sides to the center of the large square. Now you have four (small) squares. Take away 2 adjacent toothpicks from the ones in the center, and you have 2 squares : one remaining small one and the large one that has the small one inside it.
(see related link)
Note that the question does not say how the 5 squares are arranged. Let me specify one scenario: ____ |_|_| |_|_| |_| Take the two toothpicks from the upper left corner (the upper-right and the corner right below it will do too) and put them inside one of the remaining squares like a cross +. I can count 7 squares or 8 squares, depending on whether I count the square that contains the + or not. If your question can be more specific about the count of toothpicks, perhaps we can have a better solution. ======================
assuming by boxes you mean squares in two dimensions its easy. Make the five boxes all next to each other so they share sides then remove two toothpicks here the top and bottom of a middle box and you are left with 4.
One fat quarter yields twelve 5 inch squares
the answer is 24
5
You can make 5 triangles out of 9 toothpicks. With 6 toothpicks, make a large triangle with 2 toothpicks for each side. Now, take individual toothpicks, and make a smaller triangle inside the larger one by joining the midpoints of the sides of the previous triangle. (The vertices of the smaller triangle are the midpoints of the sides of the larger one).
Take two toothpicks that create an outside corner. Cross them like a + inside one of the remaining boxes. Count the new four smaller boxes inside it as 4, the one they are formed in as 5, and the two untouched boxes as 6 and 7. (The trick is to remember to count the larger box the 4 are formed in.)
form triangles side by side
3+1+1=5 5 toothpicks
5 or 6 Depending on what shape you are thinking of
2
So whats the question? If i had 5 squares remove 3 lines to make 4 squares but keep the 3 lines within the 4 squares what?