When a parachutist jumps, the parachute deploys and opens up, creating a large surface area. This increases air resistance, which slows down the fall by creating a drag force that counters gravity. The parachute allows the parachutist to safely land at a slower speed than if they were falling freely.
A parachute works due to air resistance, which creates drag forces that slow down the falling object by pushing against the air. As the parachute opens and fills with air, the drag force increases, counteracting the force of gravity and allowing for a controlled descent.
Thrust does not act on a parachute. A parachute experiences air resistance, which is a force that opposes the downward motion of the parachute and slows its descent. This air resistance allows the parachute to safely decelerate a falling object.
An open parachute increases air resistance because it catches more air, slowing down the fall. In contrast, a closed parachute offers less resistance because it presents a smaller surface area to the air, causing the object to fall faster.
The size of the parachute affects air resistance because a larger parachute will have more surface area interacting with the air, creating more drag. This drag helps to slow down the descent of the object attached to the parachute. Conversely, a smaller parachute will generate less air resistance and may result in a faster descent.
The larger the size of the parachute the more air resistance is caused because its larger surface traps more air. Becuase there is more air resistance the larger the parachute the slower it travels to the ground. The smaller the parachute the faster it falls to the ground for the opposite reason.
Air Resistance slows the parachute down.
A parachute works due to air resistance, which creates drag forces that slow down the falling object by pushing against the air. As the parachute opens and fills with air, the drag force increases, counteracting the force of gravity and allowing for a controlled descent.
Thrust does not act on a parachute. A parachute experiences air resistance, which is a force that opposes the downward motion of the parachute and slows its descent. This air resistance allows the parachute to safely decelerate a falling object.
A parachute works as the gravity allows the parachute to go up into the air, then the surface area is covered with air resistance.
An open parachute increases air resistance because it catches more air, slowing down the fall. In contrast, a closed parachute offers less resistance because it presents a smaller surface area to the air, causing the object to fall faster.
The size of the parachute affects air resistance because a larger parachute will have more surface area interacting with the air, creating more drag. This drag helps to slow down the descent of the object attached to the parachute. Conversely, a smaller parachute will generate less air resistance and may result in a faster descent.
The larger the size of the parachute the more air resistance is caused because its larger surface traps more air. Becuase there is more air resistance the larger the parachute the slower it travels to the ground. The smaller the parachute the faster it falls to the ground for the opposite reason.
Air resistance will increase when the parachute opens, and the decent of the skydiver will slow down.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
When parachute strings are longer, there is more surface area of the strings exposed to the air. This increases the overall air resistance experienced by the parachute system as a whole, making it slower to fall.
The force that changes when the parachute opens is air resistance, also known as drag force. As the parachute opens, it increases the surface area exposed to the air, which increases the drag force acting on the parachute and slows down the descent of the object attached to the parachute.
A parachute jumper slows down due to air resistance pushing against the open parachute. As the parachute increases in surface area, it creates more drag, which counteracts the force of gravity pulling the jumper down. This results in a gradual decrease in speed until the jumper reaches a safe landing velocity.