Gravity is the property of space and matter that causes a pair of forces between
every pair of objects, attracting them toward each other. Depending on what other
forces may be around, and on the objects' relative motion, their response to the
forces may be to stay where they are, accelerate toward each other, sail past
each other on curved paths, or enter orbit around their common center of mass.
An object's size does not directly affect its gravity. Gravity depends on an object's mass and distance from other objects. However, larger objects with more mass tend to have stronger gravitational pulls.
Friction and acceleration due to gravity do not directly affect the weight of an object. Weight is determined by the gravitational force acting on the object, which is independent of these factors. However, friction can affect the apparent weight of an object on a surface by opposing the force of gravity.
The factors that affect the ability of gravity to do work include the distance the object falls, the mass of the object, and the presence of other forces that may oppose gravity, such as friction or air resistance. The work done by gravity is determined by the height through which the object falls and the force of gravity acting on the object.
Weight directly impacts the position of an object's center of gravity. The center of gravity is the point where the weight of an object can be considered to act. As an object's weight increases, the center of gravity shifts towards the heavier end of the object.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
An object's size does not directly affect its gravity. Gravity depends on an object's mass and distance from other objects. However, larger objects with more mass tend to have stronger gravitational pulls.
Friction and acceleration due to gravity do not directly affect the weight of an object. Weight is determined by the gravitational force acting on the object, which is independent of these factors. However, friction can affect the apparent weight of an object on a surface by opposing the force of gravity.
The factors that affect the ability of gravity to do work include the distance the object falls, the mass of the object, and the presence of other forces that may oppose gravity, such as friction or air resistance. The work done by gravity is determined by the height through which the object falls and the force of gravity acting on the object.
Weight directly impacts the position of an object's center of gravity. The center of gravity is the point where the weight of an object can be considered to act. As an object's weight increases, the center of gravity shifts towards the heavier end of the object.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
Gravity and friction.
No, mass remains constant.
Sin no
Gravity affects an object's weight, which is the force of gravity acting on its mass. The mass of an object remains the same regardless of its location, but its weight can change depending on the strength of gravity. In areas with stronger gravity, objects will weigh more compared to areas with weaker gravitational pull.
The weight of an object on Earth is influenced by the mass of the object and the acceleration due to gravity. Weight is calculated by multiplying an object's mass by the acceleration due to gravity (9.8 m/s^2 on Earth). Therefore, variations in either mass or gravity can affect an object's weight on Earth.
The factors that affect the way gravity acts on an object include the mass of the object and the distance between the object and the source of gravity (such as the Earth). Objects with more mass experience a stronger gravitational force, while objects that are farther apart experience a weaker gravitational force.
There is a force of gravity between every pair of masses. So any object with mass is attracted to every other object with mass.