Weight has nothing to do with how fast things fall, only wind resistance. Take two 16 ounce soda bottles, open one and drink eight ounces. The unopened bottle is twice as heavy as the opened bottle. Drop both bottles at the same time from a tall building: they will hit the ground at the same time. That is because gravity is a constant and the velocity of any falling object is 9.8 meters per second/per second.
Acceleration is the same for all objects at m/s^2 (32.2 ft/s^2 or 22 mph) for each second of its descent. Thus, ignoring air resistance an object starting from rest will attain a velocity of 9.81 m/s after one second, 19.62 m/s after two seconds, and so on. The argument of the feather and the hammer (the hammer hitting the ground first) has nothing to do with weight, but rather that the feather has much higher aerodynamic qualities than the hammer. Weight does not affect how quickly things fall.
No, the air inside a ball does not affect how fast it falls. The rate at which an object falls is determined by gravity and the air resistance it encounters, not the properties of the air contained within the object.
Yes, the amount of water in a balloon can affect how fast it falls. A balloon filled with more water will be heavier and experience a faster rate of descent due to the increased gravitational pull. The added weight can also influence the air resistance acting on the balloon as it falls.
No, the increase in weight does not cause an object to fall faster. In a vacuum, objects of different weights fall at the same rate due to gravity. The rate at which an object falls is primarily determined by the force of gravity acting upon it, not its weight.
Yes, however, even air affects how fast something falls. The weight of the water is what causes buoyancy (certain materials to float), and and the resistance of water plays a small role - the weight of the water being the larger role - in what causes other materials to fall slower than they would through air. There are actually certain things that are buoyant in the air, like helium. You will notice that if you let all the air out of your lungs, you will fall down through the water at a certain (very slow) speed. That speed is your terminal velocity through water. The terminal velocity of an average sized human through the air is about 55.6 m/s (200 kph or 124 mph). This speed is obviously much higher than the speed at which something falls through water. So water does affect haw fast something falls. "But wait, certain objects appear to fall through the water at the same speed that they fall through the air!" To explain this, water affects how fast something falls - compared to how fast it falls through the air - depending on its density. The object which you're talking about, is actually falling slower through the water, you just can't tell. We see this property in air too, why do you think a pound of feathers falls much slower than a lead weight?
The upward bouyant force depends only on the weight of the displaced fluid. The NET force (object's weight - bouyant force) depends on the object's weight and will determine how fast it sinks.
No, the air inside a ball does not affect how fast it falls. The rate at which an object falls is determined by gravity and the air resistance it encounters, not the properties of the air contained within the object.
Yes, the amount of water in a balloon can affect how fast it falls. A balloon filled with more water will be heavier and experience a faster rate of descent due to the increased gravitational pull. The added weight can also influence the air resistance acting on the balloon as it falls.
No, the increase in weight does not cause an object to fall faster. In a vacuum, objects of different weights fall at the same rate due to gravity. The rate at which an object falls is primarily determined by the force of gravity acting upon it, not its weight.
Yes, however, even air affects how fast something falls. The weight of the water is what causes buoyancy (certain materials to float), and and the resistance of water plays a small role - the weight of the water being the larger role - in what causes other materials to fall slower than they would through air. There are actually certain things that are buoyant in the air, like helium. You will notice that if you let all the air out of your lungs, you will fall down through the water at a certain (very slow) speed. That speed is your terminal velocity through water. The terminal velocity of an average sized human through the air is about 55.6 m/s (200 kph or 124 mph). This speed is obviously much higher than the speed at which something falls through water. So water does affect haw fast something falls. "But wait, certain objects appear to fall through the water at the same speed that they fall through the air!" To explain this, water affects how fast something falls - compared to how fast it falls through the air - depending on its density. The object which you're talking about, is actually falling slower through the water, you just can't tell. We see this property in air too, why do you think a pound of feathers falls much slower than a lead weight?
for how fast an object falls, use v=gt. g stands for the acceleration of gravity- 9.8 m/s2 v stands for speed t stands for time for how far that object falls, use d=0.5gt2 d being distance
Surface area is ONE thing that can affect how fast an object falls. Two forces determine how fast an object falls - the force of gravity and the opposing drag on the object from the medium it is falling through. In the case of an object falling in a vacuum, there is no drag so the object falls strictly according to the law of gravity. If an object is dropped through a fluid such as air or water, it can reach a terminal velocity where the force of gravity is exactly counterbalanced by the opposing drag on the object. In this case acceleration ceases - although motion does not. In other words, the object continues to fall, but it doesn't speed up. Drag force is a function of object velocity, viscosity of the fluid it is falling through, the surface area of the falling object, the surface roughness of the falling object, and the geometry of the falling object (spheres usually have less drag than cubes for example).
In air, yes. In vacuum, no.
It is possible.
The upward bouyant force depends only on the weight of the displaced fluid. The NET force (object's weight - bouyant force) depends on the object's weight and will determine how fast it sinks.
Weight has nothing to do with how fast things fall, only wind resistance. Take two 16 ounce soda bottles, open one drink eight ounces. The unopened bottle is twice as heavy as the opened bottle. Close the bottle you just drank half of and drop them at the same time from a tall building, they will hit the ground at the same time. That is because gravity is a constant and the velocity of any falling object is 9.8 meters per second/per second. Acceleration is the same for all objects at m/s^2 (32.2 ft/s^2 or 22 mph) for each second of its descent. Thus, ignoring air resistance an object starting from rest will attain a velocity of 9.81 m/s after one second, 19.62 m/s after two seconds, and so on. If you are wondering why a hammer hit the ground before a feather, look at it's aerodynamic qualities, it has nothing to do with its weight. Air resitance depends on the coefficient of drag and has nothing to do with weight.
it cant run fast if it is fat
The weight of an object affects how quickly it can reach its terminal velocity when falling with a parachute. Heavier objects typically reach terminal velocity faster than lighter objects due to the greater force of gravity acting on them. However, once both objects reach terminal velocity, they will fall at the same constant speed regardless of their weight.