At STP, 1 mole of any gas occupies 22.4 L. So, 7.3 L of H2 corresponds to 7.3/22.4 = 0.3263 mol. Since 1 mol of H2 contains 6.022 x 10^23 molecules, the number of molecules in 7.3 L of H2 at STP would be 0.3263 mol x 6.022 x 10^23 molecules/mol = 1.963 x 10^23 molecules.
The answer is 0,2675 moles.
Using stoichiometry, 16.2 L of H2 gas at STP equals about .7228 moles (1 L of gas at STP has a volume of 22.41 L), and there are 6.02 x 1023molecules of hydrogen in a mole, so we have (6.02 x 1023molecules/mol)(.7228 mol) = 4.35 x 1023 hydrogen molecules. There are two hydrogen atoms in each molecule, so the answer is (4.35 x 1023molecules H2)(2 H atoms/molecule) = 8.70 x 1023 H atoms in 16.2 L.
The answer is 1,57.10e27 molecules.
The product of H2 is hydrogen gas (H2) composed of diatomic molecules.
Three: The reaction equation is N2 + 3 H2 -> 2 NH3
To find the number of hydrogen molecules, first calculate the number of moles in 31.8 L of H2 at STP using the ideal gas law. Then use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules.
At STP (Standard Temperature and Pressure), the volume of 1 mole of any gas is 22.4 liters. Since hydrogen gas exists as H2 molecules, 67.2 liters of hydrogen gas at STP contains 3 moles of H2 molecules. Since each H2 molecule contains 2 hydrogen atoms, there are 6 moles of hydrogen atoms, which is equivalent to 6 x 6.022 x 10^23 atoms of hydrogen.
The answer is 0,2675 moles.
0.00922 g of H2 gas will occupy approximately 0.100 L at STP
1 mole H2 = 2.016g H2 = 6.022 x 1023 molecules H210g H2 x 1mol H2/2.016g H2 x 6.022 x 1023 molecules H2/1mol H2 = 3 x 1024 molecules H2 (rounded to 1 significant figure)
Using stoichiometry, 16.2 L of H2 gas at STP equals about .7228 moles (1 L of gas at STP has a volume of 22.41 L), and there are 6.02 x 1023molecules of hydrogen in a mole, so we have (6.02 x 1023molecules/mol)(.7228 mol) = 4.35 x 1023 hydrogen molecules. There are two hydrogen atoms in each molecule, so the answer is (4.35 x 1023molecules H2)(2 H atoms/molecule) = 8.70 x 1023 H atoms in 16.2 L.
Given/Known:1mole of H2 = 2.01588g H21mole of H2 = 6.022 x 1023 molecules H21) Convert molecules of H2 to moles of H2 by doing the following calculation.9.4 x 1025 molecules H2 x (1mol H2/6.022 x 1023 molecules H2) = 156mol H22) Convert the moles of H2 to mass in grams of H2.156mol H2 x (2.01588g H2/1mol H2) = 314g H2
The answer is 1,57.10e27 molecules.
The chemical reaction is:N2 + 3 H2 = 2 NH3For six molecules of nitrogen N2 18 molecules of hydrogen H2 are needed.
0.175 X Avogadro's Number = about 1.05 X 1023.
The product of H2 is hydrogen gas (H2) composed of diatomic molecules.
Three: The reaction equation is N2 + 3 H2 -> 2 NH3