1,67.1024 argon atoms is equal to 2,773 moles.
2.3 × 1024 atoms of Ar
The answer is 15,2 moles.
If it is 1.54 moles of Br atoms then the answer is 9.274 X 1023 atoms.If it is 1.54 moles of Br2 molecules then the answer is 1.855 X 1024 atoms.
10.0 moles K2SO4 (6.022 X 1023/1 mole K2SO4) = 6.02 X 1024 atoms of potassium sulfate ==========================
How many moles are there in 9.0333x1024 atoms of helium
A mole of argon includes Avogadro's Number of atoms of argon. Therefore, the answer is (3.0 X 1024)/(6.022 X 1023) or 5.0 moles, to the justified number of significant digits.
2.3 × 1024 atoms of Ar
2,80 1024 atoms of silicon equals 0,465 moles.
The answer is 15,2 moles.
56 moles × (6.02 × 1023) = 3.37 × 1024 atoms
2.26*1024
If it is 1.54 moles of Br atoms then the answer is 9.274 X 1023 atoms.If it is 1.54 moles of Br2 molecules then the answer is 1.855 X 1024 atoms.
(2.16x10^24 atoms) x ( 1 mole/ 6.022x10^23 atoms) = 0.3586848223x10^1 which your answer should be 3.59 moles
To find the number of argon atoms in a 40.0-g sample, you first need to calculate the number of moles of argon in the sample using the molar mass of argon (39.95 g/mol). Then, you can use Avogadro's number (6.022x10^23 atoms/mol) to determine the number of atoms in that many moles of argon.
One mole of any substance contains Avogadro's number of particles, which is approximately 6.022 x 10^23. Therefore, one million argon atoms would be equivalent to roughly 1.66 x 10^-17 moles of argon atoms.
0.125 moles of argon gas contain 7.52 x 10^23 atoms.
To find the number of argon atoms, we first need to convert the amount from millimoles to moles by dividing by 1000. Next, we use Avogadro's number, which is 6.022 x 10^23 atoms/mol, to calculate the number of atoms in 7.66 x 10^2 moles of argon. The result is approximately 4.61 x 10^26 argon atoms.