answersLogoWhite

0

How to find out the partial derivative of a summation?

User Avatar

Kathryne Hintz

Lvl 10
4y ago

Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How to find out the partial derivative of a summation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Why do you need total derivative and partial derivative?

The partial derivative only acts on one the variables on the equations and treats the others as constant.


What is difference between derivative and summation?

derivative means dividing any thing into various small parts, while summation or integral means adding up various small parts to form a single entity.


What is a partial derivative?

A partial derivative is the derivative of a function of more than one variable with respect to only one variable. When taking a partial derivative, the other variables are treated as constants. For example, the partial derivative of the function f(x,y)=2x2 + 3xy + y2 with respect to x is:?f/?x = 4x + 3yhere we can see that y terms have been treated as constants when differentiating.The partial derivative of f(x,y) with respect to y is:?f/?y = 3x + 2yand here, x terms have been treated as constants.


What are spacial derivatives?

The spacial derivative is the measure of a quantity as and how it is being changed in space. This is different from a temporal derivative and partial derivative.


What are the applications of partial derivatives in real analysis?

what are the applications of partial derivative in real analysis.


How do you take the derivative of a sawtooth waveform?

Consider that a sawtooth waveform is the summation of the infinite series of sine waves with amplitude equal to 1 over the multiplier of the frequency. Now you can take the derivative, or at least approximate it. You will find that the derivative of a sawtooth is a pulse, in the ideal case, a pulse with infinite amplitude and zero width.


What is the difference between total differentiation and partial differentiation?

Suppose, Z is a function of X and Y. In case of Partial Differentiation of Z with respect to X, all other variables, except X are treated as constants. But, total derivative pf z is given by, dz=(partial derivative of z w.r.t x)dx + (partial derivative of z w.r.t y)dy


What is the derivative of x-y?

The partial derivative in relation to x: dz/dx=-y The partial derivative in relation to y: dz/dy= x If its a equation where a constant 'c' is set equal to the equation c = x - y, the derivative is 0 = 1 - dy/dx, so dy/dx = 1


What is the symbol and definition of summation?

Summation means to sum up, or find the total.


Why is the partial differential equation important?

Partial differential equations are great in calculus for making multi-variable equations simpler to solve. Some problems do not have known derivatives or at least in certain levels in your studies, you don't possess the tools needed to find the derivative. So, using partial differential equations, you can break the problem up, and find the partial derivatives and integrals.


What is the difference between partial derivative and derivative?

Say you have a function of a single variable, f(x). Then there is no ambiguity about what you are taking the derivative with respect to (it is always with respect to x). But what if I have a function of a few variables, f(x,y,z)? Now, I can take the derivative with respect to x, y, or z. These are "partial" derivatives, because we are only interested in how the function varies w.r.t. a single variable, assuming that the other variables are independent and "frozen". e.g., Question: how does f vary with respect to y? Answer: (partial f/partial y) Now, what if our function again depends on a few variables, but these variables themselves depend on time: x(t), y(t), z(t) --> f(x(t),y(t),z(t))? Again, we might ask how f varies w.r.t. one of the variables x,y,z, in which case we would use partial derivatives. If we ask how f varies with respect to t, we would do the following: df/dt = (partial f/partial x)*dx/dt + (partial f/partial y)*dy/dt + (partial f/partial z)*dz/dt df/dt is known as the "total" derivative, which essentially uses the chain rule to drop the assumption that the other variables are "frozen" while taking the derivative. This framework is especially useful in physical problems where I might want to consider spatial variations of a function (partial derivatives), as well as the total variation in time (total derivative).


What is geometrical representation of partial derivatives?

The partial derivative of z=f(x,y) have a simple geometrical representation. Suppose the graph of z = f (x y) is the surface shown. Consider the partial derivative of f with respect to x at a point. Holding y constant and varying x, we trace out a curve that is the intersection of the surface with the vertical plane. The partial derivative measures the change in z per unit increase in x along this curve. Thus, it is just the slope of the curve at a value of x. The geometrical interpretation of is analogous in both types of derivatives, i.e., Ordinary and Partial Derivatives