Top Answer
User Avatar
Wiki User
Answered 2009-08-30 01:56:45

The sample space is HH, HT, TH, HH. Since the HH combination can occur once out of four times, the probability that if a coin is flipped twice the probability that both will be heads is 1/4 or 0.25.


Your Answer

Related Questions

The probability that 2 flipped coins both come up heads is 0.52 or 0.25

The correct answer is 1/2. The first two flips do not affect the likelihood that the third flip will be heads (that is, the coin has no "memory" of the previous flips). If you flipped it 100 times and it came up heads each time, the probability of heads on the 101st try would still be 1/2. (Although, if you flipped it 100 times and it came up heads all 100 times - the odds of which are 2^100, or roughly 1 in 1,267,650,000,000,000,000,000,000,000,000 - you should begin to wonder about whether it's a fair coin!). If you were instead asking "What is the probability of flipping a coin three times and having it land on "heads" all three times, then the answer is 1/8.

The probability is 0.25.Look at it this way--if you toss a coin twice, there are four equally-probable outcomes:tails, tailstails, headsheads, tailsheads, headsSo the probability of heads twice in a row is one in four, or 25%.the chance of tossing heads is 1/2 (50%) The chance of tossing the next heads is 1/2 (50%) 1/2 x 1/2 = 1/4 (25%)

The probability is 25%. The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips. So turn 50% into a decimal --> 0.5 Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25. Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.

The answer depends on how many times the coin is tossed. The probability is zero if the coin is tossed only once! Making some assumptions and rewording your question as "If I toss a fair coin twice, what is the probability it comes up heads both times" then the probability of it being heads on any given toss is 0.5, and the probability of it being heads on both tosses is 0.5 x 0.5 = 0.25. If you toss it three times and want to know what the probability of it being heads exactly twice is, then the calculation is more complicated, but it comes out to 0.375.

The probability that both coins are heads is the probability of one coin landing heads multiplied by the probability of the second coin landing heads: (.5) * (.5) = .25 or (1/2) * (1/2) = 1/4

If both tosses are fair, the probability of that outcome is one in four.

One in four. 1:4. The probability of getting heads when a fair coin is tossed is: P(H) = 1/2. The probability of getting heads on a second toss is: P(H) = 1/2, this result is independent of the result of the first toss. The probability of having both events happen (heads on the first and heads on the second toss) is: P(H1UH2) = (1/2)∙(1/2) = 1/4 = 0.25 = 0.25%

The probability of 2 coins both landing on heads or both landing on tails is 1/2 because there are 4 possible outcomes. Head, head. Head, tails. Tails, tails. Tails, heads. Tails, heads is different from heads, tails for reasons I am unsure of.

0.5 in each case. The probability of both happening simultaneously is 1/4

The probability of tossing a coin twice and getting tails both times is 1 in 4, or 25%. If you have already tossed a coin and had it land on tails, the probability that it will land on tails again the next time you toss it is 50%.

Generally, the larger the sample the more reliable the results. Example: If you flipped a coin twice and got heads both times you could say the coined is biased towards heads. However, if you repeat the experiment 100 times your results will be a lot more reliable.

Half the cards in a standard pack are black. Therefore the probability of drawing a black card is 1/2. Half the sides of a coin are "heads" so again the probability is 1/2. Therefore the probability you will both draw a black card and flip heads = 1/2 * 1/2 = 1/4.

This is correct. For example the probability of tossing a coin so that it comes up heads is 1/2 and the probability that it comes up tails is also 1/2. The probability that it will come up either heads or tails is 1.

First event is to roll a 3 or 6 on a die, which gives you a probability of 2 out of 6. Second event is tossing a heads on a coin, so a probability of 1 out of 2. Since both chances are not related, you can multiply both chances: 2/6 times 1/2 = 1/6 = 0,166666...

The difference between experimental probability and theoretical probability is that experimental probability is the probability determined in practice. Theoretical probability is the probability that should happen. For example, the theoretical probability of getting any single number on a number cube is one sixth. But maybe you roll it twice and get a four both times. That would be an example of experimental probability.

The probability of heads on the first flip is 50%.The probability of heads on the second flip is 50%.The probability of both is (50% x 50%) = 25% .=========================================Another way to look at it:Two tosses can come up in four different ways:H HH TT HT TOnly one of these . . . H H . . . counts as success.1 out of 4 = 25% .

The probability of getting all heads or all tails in 5 flips of a coin is 1 in 16.The probability of getting a head or a tail on the first flip is 1 in 1. The probability of each of the following coins matching the first coin is 1 in 2. Simply multiply the five probabilities (1 in 1) (1 in 2) (1 in 2) (1 in 2) (1 in 2) and you get 1 in 16.It is true that the probability of getting all heads is 1 in 32, and the probability of getting all tails is also 1 in 32. Since the question asked the probability of both cases (all heads or all tails), the answer is 1 in 16.

Probability of a 3 on the first roll = 1/6Probability of a 3 on the second roll = 1/6Probability of both of them = (1/6) x (1/6) = 1/36 = 0.0277777 = 2.78% (rounded)

It depends on how many points there are that the spinner can land on. If there are 8, for example, the probability would be 8/16, or 1/2...

Copyright ยฉ 2020 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply.