42.16
your welcome :)
No, multiplying meters and Newtons does not result in joules. Joules are a unit of energy, while meters measure distance and Newtons measure force. To calculate work, which is in joules, you would need to multiply force (in Newtons) by distance (in meters) in the direction of the force.
The formula to calculate force in newtons is force mass x acceleration.
No, the result of multiplying Newtons by meters is not a valid unit in physics. Newtons represent a unit of force, while meters represent a unit of distance. If you multiply Newtons by meters, you get Newton-meters, which represents a unit of work or energy, also known as a joule.
To calculate the work done, you would multiply the force applied (2.5 N) by the distance moved (7 m). Work = Force x Distance. So, the work done to move the dresser 7 meters with a force of 2.5 newtons would be 17.5 joules.
Here are some example problems that can help you understand the concept of torque: Calculate the torque required to open a door with a force of 10 Newtons applied at a distance of 0.5 meters from the hinge. Determine the torque produced by a wrench when a force of 20 Newtons is applied at a distance of 0.3 meters from the pivot point. Find the torque exerted by a motor with a force of 50 Newtons applied at a distance of 0.4 meters from the center of rotation. Calculate the torque needed to lift a 100 kg object with a lever arm of 0.6 meters. Determine the torque required to rotate a wheel with a radius of 0.2 meters using a force of 30 Newtons.
No, multiplying meters and Newtons does not result in joules. Joules are a unit of energy, while meters measure distance and Newtons measure force. To calculate work, which is in joules, you would need to multiply force (in Newtons) by distance (in meters) in the direction of the force.
The formula to calculate force in newtons is force mass x acceleration.
No, the result of multiplying Newtons by meters is not a valid unit in physics. Newtons represent a unit of force, while meters represent a unit of distance. If you multiply Newtons by meters, you get Newton-meters, which represents a unit of work or energy, also known as a joule.
To calculate the work done, you would multiply the force applied (2.5 N) by the distance moved (7 m). Work = Force x Distance. So, the work done to move the dresser 7 meters with a force of 2.5 newtons would be 17.5 joules.
The work is 347 joules.
Here are some example problems that can help you understand the concept of torque: Calculate the torque required to open a door with a force of 10 Newtons applied at a distance of 0.5 meters from the hinge. Determine the torque produced by a wrench when a force of 20 Newtons is applied at a distance of 0.3 meters from the pivot point. Find the torque exerted by a motor with a force of 50 Newtons applied at a distance of 0.4 meters from the center of rotation. Calculate the torque needed to lift a 100 kg object with a lever arm of 0.6 meters. Determine the torque required to rotate a wheel with a radius of 0.2 meters using a force of 30 Newtons.
You multiply the mass by the gravity. Normal Earth gravity is about 9.8 (in meters/second2, or the equivalent newton/kilogram).
To convert Newtons to Joules, you multiply the force in Newtons by the distance in meters over which the force is applied. Joules are a unit of energy, and when you multiply force (in Newtons) by distance (in meters), you get work done, which is measured in Joules.
W=Fd Where F is the force on the object and d is that distance that the object traveled. If F is in Newtons and d is in meters, then works will be in joules.
Meters / second2, or the equivalent Newtons / kg.Meters / second2, or the equivalent Newtons / kg.Meters / second2, or the equivalent Newtons / kg.Meters / second2, or the equivalent Newtons / kg.
The work done is calculated using the formula: Work = Force x Distance. Plugging in the values, we get Work = 3.4 N x 12.4 m = 42.16 Joules.
Usually meters, kilograms, and Newtons.