To "connect" two neurons, (or a neuron and a muscle cell), by providing a space between an axon terminal of one neuron and a dendrite of another neuron (or a muscle cell), so neurotransmitters that are released by an axon terminal can diffuse across that space to reach the dendrite (or muscle cell) and either initiate the possibility of the second neuron to fire or cause a muscle cell to contract.
c) neuromuscular junction, d) synaptic cleft.
Acetylcholinesterase is always present in the synaptic cleft of a neuromuscular junction. It is responsible for breaking down the neurotransmitter acetylcholine, allowing for the termination of the signal transmission between the neuron and the muscle cell.
A synapse is the junction or a point of close contact between two neurons.
Neuromuscular junction or neuromuscular synapse
The neuromuscular junction consists of the motor neuron terminal, synaptic cleft, and motor end plate on the muscle fiber. When an action potential reaches the motor neuron terminal, it triggers the release of acetylcholine into the synaptic cleft. Acetylcholine then binds to receptors on the motor end plate, leading to muscle contraction.
c) neuromuscular junction, d) synaptic cleft.
Synaptic Cleft.
The axon.
The gap between the axon terminal and muscle cell is called the synaptic cleft. It is defined as the small gap, measured in nanometers, between an axon terminal and any of the cell membranes in the immediate vicinity.
Acetylcholinesterase is always present in the synaptic cleft of a neuromuscular junction. It is responsible for breaking down the neurotransmitter acetylcholine, allowing for the termination of the signal transmission between the neuron and the muscle cell.
A synapse is the junction or a point of close contact between two neurons.
Neuromuscular junction or neuromuscular synapse
The neuromuscular junction consists of the motor neuron terminal, synaptic cleft, and motor end plate on the muscle fiber. When an action potential reaches the motor neuron terminal, it triggers the release of acetylcholine into the synaptic cleft. Acetylcholine then binds to receptors on the motor end plate, leading to muscle contraction.
At every junction between a motor neuron and skeletal muscle fibers
Bipolar occurs at the level of the synaptic junction between neurotransmitters and receptors in the limbic system of the brain.
Synaptic vesicles in the axon terminals of neurons contain acetylcholine. Acetylcholine is a neurotransmitter that is released from these vesicles into the synaptic cleft to transmit signals to target cells or other neurons.
The signal to excite a muscle cell involves the release of acetylcholine from the motor neuron into the synaptic cleft at the neuromuscular junction. Acetylcholine diffuses across the synaptic cleft and binds to receptors on the muscle cell membrane, leading to depolarization and muscle contraction. This process is crucial for transmitting signals from the nervous system to the muscle for movement.