answersLogoWhite

0

The solvent in which the absorbing species is dissolved also has an effect on the spectrum of the species. Peaks resulting from n ® p* transitions are shifted to shorter wavelengths (blue shift) with increasing solvent polarity. This arises from increased solvation of the lone pair, which lowers the energy of the n orbital. Often (but not always), the reverse (i.e. red shift) is seen for p ® p* transitions. This is caused by attractive polarisation forces between the solvent and the absorber, which lower the energy levels of both the excited and unexcited states. This effect is greater for the excited state, and so the energy difference between the excited and unexcited states is slightly reduced - resulting in a small red shift. This effect also influences n ® p* transitions but is overshadowed by the blue shift resulting from solvation of lone pairs.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is red solution in uv spectroscopy?

In UV spectroscopy, a red solution could indicate the presence of a compound that absorbs light more in the visible range rather than in the UV range. This could be due to the presence of colored impurities in the sample or the compound itself having strong absorbance in the visible region. Further analysis, such as UV-Vis spectroscopy, can provide more information on the specific properties of the red solution.


Why you are use monochromator in uv spectroscopy?

A monochromator in UV spectroscopy is used to isolate a specific wavelength (or range of wavelengths) of light from the UV region of the spectrum. This helps in achieving better wavelength selectivity and accuracy in UV spectroscopic measurements by allowing only the desired wavelengths to pass through to the sample.


What are the other regions of spectroscopy aside from the visible region?

Other regions of spectroscopy include ultraviolet (UV), infrared (IR), microwave, radio, X-ray, and gamma-ray spectroscopy. Each region provides information about different aspects of a molecule's structure and behavior. UV spectroscopy is commonly used to study electronic transitions, while IR spectroscopy is utilized for molecular vibrations.


What does Wavelenght vs absorbance graph depicts in u-v spectroscopy?

A wavelength vs absorbance graph depicts in uv spectroscopy shows the different colored wavelenths of UV light and how they are absorbed and percieved, and which ones are visible and which ones are not.


Advantages and disadvantages of uv spectroscopy?

Advantages: UV spectroscopy is a fast and sensitive technique for quantitative analysis of substances that absorb UV light. It is non-destructive, requires minimal sample preparation, and can provide information on a compound's structure based on its absorption pattern. Disadvantages: UV spectroscopy has limitations in terms of low specificity, as many compounds can absorb UV light, leading to potential interferences. It may also not be suitable for compounds that do not absorb in the UV range or when dealing with complex mixtures where multiple components absorb at similar wavelengths.

Related Questions

What is hypochromicshift?

Hypochromic shift is observed in UV VISIBLE spectroscopy. This is the shift where the intensity of the absorption maxima is decreased


What is red solution in uv spectroscopy?

In UV spectroscopy, a red solution could indicate the presence of a compound that absorbs light more in the visible range rather than in the UV range. This could be due to the presence of colored impurities in the sample or the compound itself having strong absorbance in the visible region. Further analysis, such as UV-Vis spectroscopy, can provide more information on the specific properties of the red solution.


What are the three techniques for analysis of spectroscopy?

1 infra-red (UV-VIS) spectroscopy. 2 proton magnetic resonance spectroscopy. 3 carbon 13 magnetic resonoce spectroscopy.


What is shift reagent used in uv?

A shift reagent is used in UV spectroscopy to impart a specific shift in the absorption spectrum of a compound, allowing for better differentiation or identification of functional groups. It is often employed to enhance sensitivity or resolve overlapping peaks in a UV absorption spectrum.


How do you identify redshift occur in nano particle determination?

Redshift in nanoparticles is identified by observing a shift in the wavelength of light emitted or absorbed by the nanoparticles compared to the original wavelength. This shift indicates a change in the energy levels and size of the nanoparticles. Techniques such as UV-Vis spectroscopy or fluorescence spectroscopy can be used to detect redshift in nanoparticles.


What is the study of x rays and radioactive substances?

The study of high-energy, electromagnetic radiation, which includes x-rays, is called atomic spectroscopy. The study of nuclear radioactivity and decay is called nuclear physics. For the study of electromagnetic radiation of energies below x-rays you have: UV - UV spectroscopy Visible Light - gaffer Infra-red - infrared spectroscopy Microwave - microwave spectroscopy Radio - amateur broadcaster


What is the advantage of using UV-Vis spectroscopy compared to a spectronic 20?

UV-Vis spectroscopy allows for a wider range of wavelengths to be analyzed compared to a Spectronic 20 which is limited in the wavelengths it can measure. Additionally, UV-Vis spectroscopy provides higher sensitivity and accuracy in quantifying absorption of light by a sample compared to a Spectronic 20. UV-Vis spectroscopy also offers more advanced data analysis capabilities.


What is ring residue in Woodward fiser rule of uv spectroscopy?

Ring residue in the Woodward-Fieser rule refers to the cumulative effect of additional rings in a molecule, which increases the absorption wavelength in UV spectroscopy. The presence of multiple ring structures leads to a red shift in the absorption maximum compared to a molecule with fewer rings. This phenomenon can be used to predict the absorption wavelength of conjugated systems based on the number and type of rings present in the molecule.


How to calculate UV spectroscopy for beta-carotene?

By the Huckel determinant


Explain the effect of shift reagent in uv on the molecular deposition of organic compound?

Shift reagents impact the position of nuclear magnetic resonance (NMR) peaks in a spectrum by interacting with specific functional groups. In UV-Vis spectroscopy, they do not directly influence the molecular deposition of organic compounds. Instead, they affect the electronic structure of the compound under study, leading to changes in the absorption characteristics observed in the UV spectrum.


What are the differences between UV spectroscopy and IR spectroscopy in terms of their applications and principles?

UV spectroscopy and IR spectroscopy are both analytical techniques used to study the interaction of light with molecules. UV spectroscopy measures the absorption of ultraviolet light by molecules, providing information about electronic transitions and the presence of certain functional groups. On the other hand, IR spectroscopy measures the absorption of infrared light by molecules, providing information about the vibrational modes of the molecules and the presence of specific chemical bonds. In terms of applications, UV spectroscopy is commonly used in the study of organic compounds and in the pharmaceutical industry, while IR spectroscopy is widely used in the identification of unknown compounds and in the analysis of complex mixtures.


Why you are use monochromator in uv spectroscopy?

A monochromator in UV spectroscopy is used to isolate a specific wavelength (or range of wavelengths) of light from the UV region of the spectrum. This helps in achieving better wavelength selectivity and accuracy in UV spectroscopic measurements by allowing only the desired wavelengths to pass through to the sample.