fossils
Biochemical evidence of evolution is considered indirect because it does not provide direct evidence of specific evolutionary events or transitions in the fossil record. Instead, it demonstrates similarities in molecular structures or sequences across different species, which support the idea of a common ancestor but do not directly show the process of evolution occurring.
Biochemical evidence of evolution is considered indirect because it does not provide direct observation of evolutionary changes happening over time. Instead, it relies on comparing similarities and differences in biochemistry, such as DNA sequences or protein structures, to infer evolutionary relationships among organisms.
The three forms of evidence supporting evolution are fossil record showing transitional forms, comparative anatomy highlighting similarities in structures across species, and genetic similarities indicating common ancestry.
One key piece of biochemical evidence that supports biological evolution is the similarity in DNA sequences among different species. By comparing the DNA sequences of organisms, scientists can uncover evolutionary relationships and common ancestry. Additionally, the presence of vestigial structures and shared biochemical pathways among different species further support the idea of a common evolutionary origin.
Biochemical similarities among different species, such as shared genetic sequences and metabolic pathways, provide evidence for a common ancestry and evolutionary relationships. These similarities suggest that organisms have evolved from a common ancestor and have undergone genetic changes over time. Studying biochemical similarities helps scientists understand the processes of evolution and how species have diversified and adapted to their environments.
DNA
The morphological evidence which is shown in fossils to modern animals supports evolution because some dinosaurs, for instance, had feathers and we can obviously see that trait today in birds. The biochemical evidence, which comes in the form of DNA comparison and amino acid similarities, shows that we related closely to monkeys and pigs, which suggests that we have close ancestors to these animals.
biochemical evidence anatomical evidence fossils vestigial structure embryological evidence
Biochemical evidence of evolution is considered indirect because it does not provide direct evidence of specific evolutionary events or transitions in the fossil record. Instead, it demonstrates similarities in molecular structures or sequences across different species, which support the idea of a common ancestor but do not directly show the process of evolution occurring.
There is no evidence supporting it, and all the more evidence supporting the less controversial models of human evolution, based on evolutionary theory.
Biochemical evidence of evolution is considered indirect because it does not provide direct observation of evolutionary changes happening over time. Instead, it relies on comparing similarities and differences in biochemistry, such as DNA sequences or protein structures, to infer evolutionary relationships among organisms.
When the protein structure changes there has been evolution in the organism
The three forms of evidence supporting evolution are fossil record showing transitional forms, comparative anatomy highlighting similarities in structures across species, and genetic similarities indicating common ancestry.
for all using Plato the answer is G) all of the above.
One key piece of biochemical evidence that supports biological evolution is the similarity in DNA sequences among different species. By comparing the DNA sequences of organisms, scientists can uncover evolutionary relationships and common ancestry. Additionally, the presence of vestigial structures and shared biochemical pathways among different species further support the idea of a common evolutionary origin.
Physiological similarities suggest the species evolved from the same ancestor.
The discovery of DNA and the ability to study genetic sequences have provided strong evidence supporting evolution by showing similarities in DNA among different species, indicating a common ancestry. This molecular evidence was not available to Darwin and has since reinforced the theory of evolution.