it means like a big gallery of art on a wall.. or a wall of art or hall of famers art work... just like a big place where a lot of art is put..
printers proof
it means to focus on what it is that you are looking at
answer the danm qustin
Your good at art and coulours
The mean of the product of two orthogonal matrices, which represent rotations, is itself an orthogonal matrix. This is because the product of two orthogonal matrices is orthogonal, preserving the property that the rows (or columns) remain orthonormal. When averaging these rotations, the resulting matrix maintains orthogonality, indicating that the averaged transformation still represents a valid rotation in the same vector space. Thus, the mean of the rotations captures a new rotation that is also orthogonal.
In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?
At right angles - in two or more dimensions.
Orthogonal signal space is defined as the set of orthogonal functions, which are complete. In orthogonal vector space any vector can be represented by orthogonal vectors provided they are complete.Thus, in similar manner any signal can be represented by a set of orthogonal functions which are complete.
The answer will depend on orthogonal to WHAT!
Orthogonal frequency division multiplexing is special case of frequency division multiplexing where a ling serial data streams are divided into parallel data streams and each data stream is multiplied either by orthogonal frequency or code. when multiplied by code known as frequency code division multiplexing and when multiplied by orthogonal frequency then know as orthogonal frequency division multiplexing
it is planning of orthogonal planning
Orthogonal - novel - was created in 2011.
it is planning of orthogonal planning
a family of curves whose family of orthogonal trajectories is the same as the given family, is called self orthogonal trajectories.
Orthogonal is a term referring to something containing right angles. An example sentence would be: That big rectangle is orthogonal.
Richard Askey has written: 'Three notes on orthogonal polynomials' -- subject(s): Orthogonal polynomials 'Recurrence relations, continued fractions, and orthogonal polynomials' -- subject(s): Continued fractions, Distribution (Probability theory), Orthogonal polynomials 'Orthogonal polynomials and special functions' -- subject(s): Orthogonal polynomials, Special Functions