In isotonic solution nothing ail happen.
In hypertonic solution fluid will leave the cell to dilute the external fluid, causing the cell to crenate.
In Hypotonic solution fluid will move into the cell to dilute the contents of the cell, causing it to bust or haemolyse.
A hypotonic solution has a lower concentration of solutes compared to the solution it is being compared to. When a cell is placed in a hypotonic solution, water will move into the cell causing it to swell and potentially burst due to osmotic pressure.
hypertonic solution, causing water to leave the cell and causing it to shrink and become distorted in shape.
This is not true. An isotonic solution is one that is equivalent in concentration to that found within human plasma so that is usually desirable. On the other hand, a person may have too little of an ion. In that case the amount needs to be replaced using a hypertonic solution. The trouble with that is that if the patient is not carefully monitored, too much of whatever ion is used will enter the cells, causing the cells to draw more water in to maintain balance. When that happens, especially with sodium, the patient must be monitored closely because giving too much can cause the sodium level in the cells to exceed normal levels. When that happens, the cells draw more water in which can cause the cells to swell and then the membranes to begin to leak such as we see with pulmonary edema.
Yes, pure water is hypotonic to red blood cells, meaning that it has a lower concentration of solutes compared to the inside of the cells. When placed in a hypotonic solution, red blood cells may take in water and potentially burst due to the influx of water.
If a human red blood cell is placed in a hypotonic environment, the red blood cell will swell and eventually burst. The reason for this is because a hypotonic solution has a higher osmotic pressure compared to the cytoplasm of the red blood cell. Thus, the water from the hypotonic solution moves into the red blood cell causing it to rupture.
hypotonic solution
A hypotonic solution has a lower concentration of solutes compared to the solution it is being compared to. When a cell is placed in a hypotonic solution, water will move into the cell causing it to swell and potentially burst due to osmotic pressure.
secret sabihin ko sayo bukas ^_^
If a cell is placed into a hypotonic solution, the water will flow into the cell causing it to swell and possibly lyse. If a cell is placed into a hypertonic solution, the water will flow out of the cell causing it to crenate. So hemolysis occurs when the red blood cells lyse.
hypertonic solution, causing water to leave the cell and causing it to shrink and become distorted in shape.
This is not true. An isotonic solution is one that is equivalent in concentration to that found within human plasma so that is usually desirable. On the other hand, a person may have too little of an ion. In that case the amount needs to be replaced using a hypertonic solution. The trouble with that is that if the patient is not carefully monitored, too much of whatever ion is used will enter the cells, causing the cells to draw more water in to maintain balance. When that happens, especially with sodium, the patient must be monitored closely because giving too much can cause the sodium level in the cells to exceed normal levels. When that happens, the cells draw more water in which can cause the cells to swell and then the membranes to begin to leak such as we see with pulmonary edema.
Yes, pure water is hypotonic to red blood cells, meaning that it has a lower concentration of solutes compared to the inside of the cells. When placed in a hypotonic solution, red blood cells may take in water and potentially burst due to the influx of water.
When a human red blood cell is placed in a hypotonic environment, it iwll undergo cytolysis, which basically means it will explode.
Hypotonic, meaning that the solution has a lower concentration of solutes compared to the inside of the cell. This creates a concentration gradient that drives water molecules to move into the cell to balance the solute concentration.
When red blood cells (RBCs) are placed in a hypotonic solution, water moves into the cells due to a higher concentration of solutes inside the cell. This causes the cells to swell and potentially burst, a process known as hemolysis.
If a human red blood cell is placed in a hypotonic environment, the red blood cell will swell and eventually burst. The reason for this is because a hypotonic solution has a higher osmotic pressure compared to the cytoplasm of the red blood cell. Thus, the water from the hypotonic solution moves into the red blood cell causing it to rupture.
A hypotonic solution would.