If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.
If both the length and mass of a simple pendulum are increased, the frequency of the pendulum will decrease. This is because the period of a pendulum is directly proportional to the square root of the length and inversely proportional to the square root of the mass. Therefore, increasing both the length and mass will result in a longer period and therefore a lower frequency.
The time period of a pendulum is directly proportional to the square root of its length. If the length of the pendulum is increased, the time period will also increase. Conversely, if the length is decreased, the time period will decrease.
The period of oscillation increases as the mass of the pendulum bob is increased. This is because the force required to move the heavier bob is greater, leading to a slower oscillation. The period is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of gravitational acceleration.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
Period of pendulum depends only on its length that too directly and acceleration due to gravity at that place, but inversely But it is independent of the mass of the bob So as length increases its period increases.
If both the length and mass of a simple pendulum are increased, the frequency of the pendulum will decrease. This is because the period of a pendulum is directly proportional to the square root of the length and inversely proportional to the square root of the mass. Therefore, increasing both the length and mass will result in a longer period and therefore a lower frequency.
The time period of a pendulum is directly proportional to the square root of its length. If the length of the pendulum is increased, the time period will also increase. Conversely, if the length is decreased, the time period will decrease.
The period increases - by a factor of sqrt(2).
the time period of a pendulum is proportional to the square root of length.if the length of the pendulum is increased the time period of the pendulum also gets increased. we know the formula for the time period , from there we can prove that the time period of a pendulum is directly proportional to the effective length of the pendulum. T=2 pi (l\g)^1\2 or, T isproportionalto (l/g)^1/2 or, T is proportional to square root of the effective length.
The period of oscillation increases as the mass of the pendulum bob is increased. This is because the force required to move the heavier bob is greater, leading to a slower oscillation. The period is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of gravitational acceleration.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
Period of pendulum depends only on its length that too directly and acceleration due to gravity at that place, but inversely But it is independent of the mass of the bob So as length increases its period increases.
If you shorten the length of the string of a pendulum, the frequency of the pendulum will increase. This is because the period of a pendulum is directly proportional to the square root of its length, so reducing the length will decrease the period and increase the frequency.
If you'll do some careful measurements, you'll find that it doesn't happen that way.The period of a pendulum depends on its length, but not on how far you pull it to start it swinging.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.
An example of a hypothesis for a pendulum experiment could be: "If the length of the pendulum is increased, then the period of its swing will also increase." This hypothesis suggests a cause-and-effect relationship between the length of the pendulum and its swinging motion.