answersLogoWhite

0


Best Answer

The potential energy of the particle goes down just as its kinetic energy, which results from the particle's increasing motion, increases - thereby conserving the total energy of the system.

Of course these terms refer ONLY to the potential energy due to the charged particle's presence in an electric field and its change in motion in the direction of that field. If there were also a gravitational field present and the particle had mass, it would have also have potential (and kinetic, if it's falling too) energy from that field, independently of the electric field.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

11y ago

The simplest case happens when the electrical field is generated by a set of static charges that are much greater than the charge of the electron. This is the case of an electron traveling among the plates of a macroscopic capacitor.

In this case the electron is subject to an electrostatic force given by the product of the electron charge by the electrical field and directed opposite to the electrical field since the electron has a negative charge. The external electrostatic potential is not altered.

If the field is generated by a set of charges much larger than the electron charge, but in motion, the electrical field is accompanied by a magnetic field and the electron is subject to two forces: the force due to the electrical field and the force due to the magnetic field, that is called Lorentz force. While the electrical force push the electron in the direction opposite to the electrical field, the Lorentz force is always orthogonal to the electron velocity and tends to curve the electron trajectory. This is the case of an electron moving inside a macroscopic inductance.

The external potentials, that is the electrical potential (or scalar potential) and the magnetic potential (or vector potential), are not affected.

The situation is much more complex if the charges generating the external field are of the order of magnitude of the electron charge (for example the field is generated by few electrons). In this case the influence of the moving electron on the electromagnetic field cannot be neglected and the electromagnetic dynamic equations (the Maxwell equations) have to be solved by taking into account both the external charges and the considered electron contemporary to the study of the motion of all the involved charge carriers.

In this case the electromagnetic potentials (scalar and vector) could change completely due to the presence of the moving electron.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What happens to the potential energy of a stationary charge when it begins to move freely from one point to another under the influence of an electric field?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Another name for electric potential energy?

sorry


What has potential energy?

Potential energy is a energy stored within a system as a result of the position or configuration of the different parts of that system.The types of potential energy are gravitational potential energy, which is energy due to height, and elastic potential energy, which is energy involved with a stretched or compressed spring.


How can electric potential be high when electrical potential energy is realitively low?

Electric potential can be high when electrical potential energy is relatively low if the charge is low as well. ... It is correct to say that an object with twice the electric potential of another has twice the electrical potential energy only if the charges are the same.


Is an electric field a potential field?

no electric field is not a potential field .ELECTRIC FIELD IS A SCALAR QUANTITY WHERE AS POTENTIAL IS THE VECTOR QUANTITY. NO SCALAR QUANTITY HAS A FIELD SO THERE IS NO RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL OR IN OTHER WORD POTENTIAL HAS NO FIELD <<>> An electric field is a vector field, because it has magnitude and direction. A pair of charged parallel plates has an electric field between them directed from the negative to the positive plate. The electric field is the gradient of the potential, which is another field but a scalar one. A field is just a quantity with a value that depends on positon. The potential is measured in volts and if one plate is grounded and the other at positive potential V, the potential rises from zero to V as the position changes from the lower plate to the top one.


How can the electrical potential energy of a charged particle in an electric field be increased?

THIS IS A GOOD QUESTION IF WE PLACE THE CHARGE IN THE ELECTRIC FIELD AT A DISTANCE R FROM THE ELECTRIC FIELD AND PLACED THE ANOTHER POINT CHARGE AT A ANOTHER DISTANCE r WHERE R IS GRATER THAN THE SMALL R THEN THE ELECTRIC FIELD AT r IS MORE THAN THE ELECTRIC FIELD AT POINT R.ORWE CAN SAY THAT IF THE CHARGE IS PLACED IN THE DIRECTION OF ELECTRIC FIELD THAN ITS ELECTROSTATIC POTENTIAL ENERGY WILL DECREASE OR WHEN IN DIRECTION OPPOSITE THAN VICEVERSA

Related questions

Another name for electric potential energy?

sorry


Does an object with twice the electric potential of another have twice the electrical potential energy?

Yes. Electric Potential energy E= VQ thus 2VQ = 2E.


What does electrical potential mean?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


What Electrical potential energy?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


How electrical potential produce?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field.If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel.However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle.U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away)V = kq1/r (electric potential requiring only 1 charge)V = U/q2 (electric potential is potential energy without the second charge)U = Vq2 (electric potential energy is electric potential multiplied by second charge)There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass.It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive:U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes)So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way.However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location.V = k(-q1)/r = -kq1/rU = k(-q1)(q2)/r = -kq1q2/rPotential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units.Volts = Number of Joules / Number of Coulombs.Electric Potential = Electric Potential Energy / Charge of Test Particle


What has potential energy?

Potential energy is a energy stored within a system as a result of the position or configuration of the different parts of that system.The types of potential energy are gravitational potential energy, which is energy due to height, and elastic potential energy, which is energy involved with a stretched or compressed spring.


How can electric potential be high when electrical potential energy is realitively low?

Electric potential can be high when electrical potential energy is relatively low if the charge is low as well. ... It is correct to say that an object with twice the electric potential of another has twice the electrical potential energy only if the charges are the same.


Is an electric field a potential field?

no electric field is not a potential field .ELECTRIC FIELD IS A SCALAR QUANTITY WHERE AS POTENTIAL IS THE VECTOR QUANTITY. NO SCALAR QUANTITY HAS A FIELD SO THERE IS NO RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL OR IN OTHER WORD POTENTIAL HAS NO FIELD <<>> An electric field is a vector field, because it has magnitude and direction. A pair of charged parallel plates has an electric field between them directed from the negative to the positive plate. The electric field is the gradient of the potential, which is another field but a scalar one. A field is just a quantity with a value that depends on positon. The potential is measured in volts and if one plate is grounded and the other at positive potential V, the potential rises from zero to V as the position changes from the lower plate to the top one.


How can the electrical potential energy of a charged particle in an electric field be increased?

THIS IS A GOOD QUESTION IF WE PLACE THE CHARGE IN THE ELECTRIC FIELD AT A DISTANCE R FROM THE ELECTRIC FIELD AND PLACED THE ANOTHER POINT CHARGE AT A ANOTHER DISTANCE r WHERE R IS GRATER THAN THE SMALL R THEN THE ELECTRIC FIELD AT r IS MORE THAN THE ELECTRIC FIELD AT POINT R.ORWE CAN SAY THAT IF THE CHARGE IS PLACED IN THE DIRECTION OF ELECTRIC FIELD THAN ITS ELECTROSTATIC POTENTIAL ENERGY WILL DECREASE OR WHEN IN DIRECTION OPPOSITE THAN VICEVERSA


Is current present in everything of this physical universe?

No and (maybe) Yes.No. Current is the movement of electric charge from one point to another under the influence of an electric potential difference. You can have charge without current.(Maybe) Yes. You can also argue that charge is constantly moving at the atomic level as the electrons move between their various quantum states, but you can also (maybe) argue that this is not in response to an electric potential difference. You can also argue that, once you back out even a little bit and broaden your point of view, the net effect of that movement is zero.The normal understanding of current is a daisy-chaining of electrons jumping from atom to atom at the valence shell level under the influence of a much more global electric potential.


What is an energy form based on position above or below another point?

The form of energy that is stored in an object due to its position above or below another point is called potential energy. There are three types of potential energy which are the elastic, electric, and gravitational potential energy.


What does carry electrical currents?

An electric current carries electrons from an area of high potential to another area of low potential. Potential difference is the condition that must exist for a current to move electrons around.