answersLogoWhite

0


Best Answer

The concentrations on Na+ outside the cell and concentrations of K+ inside the cell determine the resting membrane potential.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What ion determines the resting membrane potential of nerve and muscle?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the inside charge of a nerve at its resting potentail?

Neurons have a resting membrane potential of approximately -70mV. Muscle cells have a resting membrane potential of approximately -90mV.


The sudden reversal of electrical charge across the neuron membrane is called?

Action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, which include neurons, muscle cells, and endocrine cells, as well as in some plant cells. In neurons, they play a central role in cell-to-cell communication.


How is resting potential achieved?

The resting membrane potential difference between the inside and the outside of the cell is the result of selective permeability of the cell membrane and the active transport of ions into and out of the cell. Almost all cells have a potential difference, but some cells, neuron and heart muscle, also have voltage and chemically gated channels that allow for transient deviations from the resting potential.


Influx of Na plus till 70mV?

The electrical potential difference across a cell membrane (the resting potential) is around -65 mV, inside negative. In nerve cells (neurones) or muscle cells this potential difference is reversed during an action potential. Sodium (Na+) channels open and Na+ ions enter the cell down their concentration gradient. This entry of positive charge depolarises the membrane ie it cancels out the resting pootential and then reverses it, so the potential becomes positive inside and negative outside, giving a potential of about +50mV.


Resting muscle generates most of ATP?

In a resting muscle you have few muscle fibres, which contract in batches to give you muscle tone. You have got maximum ATP molecules, generated in resting muscle.

Related questions

What is the inside charge of a nerve at its resting potentail?

Neurons have a resting membrane potential of approximately -70mV. Muscle cells have a resting membrane potential of approximately -90mV.


What is the electrical potential across the cell membrane of a nerve cell or muscle cell when the cell is not active?

resting potential


How would depressants affect the resting membrane potential?

the conduction of neural information to the muscle fiber


What accounts for the resting membrane potential seen in unstimulated nerve and muscle cells?

Sodium-potassium pump


Are there more sodium ions inside or outside a cardiac muscle cell during the resting membrane potential?

Outside


The sudden reversal of electrical charge across the neuron membrane is called?

Action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, which include neurons, muscle cells, and endocrine cells, as well as in some plant cells. In neurons, they play a central role in cell-to-cell communication.


How is resting potential achieved?

The resting membrane potential difference between the inside and the outside of the cell is the result of selective permeability of the cell membrane and the active transport of ions into and out of the cell. Almost all cells have a potential difference, but some cells, neuron and heart muscle, also have voltage and chemically gated channels that allow for transient deviations from the resting potential.


Influx of Na plus till 70mV?

The electrical potential difference across a cell membrane (the resting potential) is around -65 mV, inside negative. In nerve cells (neurones) or muscle cells this potential difference is reversed during an action potential. Sodium (Na+) channels open and Na+ ions enter the cell down their concentration gradient. This entry of positive charge depolarises the membrane ie it cancels out the resting pootential and then reverses it, so the potential becomes positive inside and negative outside, giving a potential of about +50mV.


What are pacemaker potentials and the action potential they trigger?

Pacemaker potentials are automatic potentials generated and are exclusively seen in the heart. They arise from the natural "leakiness" of the membrane that pacemaker cells have, resulting in passive movement of both Na+ and Ca2+ across the membrane, rising the membrane potential to about -40mV. This results in a spontaneous depolarization of the muscle that has a rise in the curve that is nowhere near as steep as the action potential of other cells. Upon depolarization, the cell will return back to its resting membrane voltage, and continue the potential again.


Triggering of the muscle action potential occurs after?

Triggering of the muscle action potential occurs after acetylcholine binds to chemically-gated channels in the end plate membrane.


When does a neuron exhibit resting potential?

The human nervous system consists of billions of nerve cells (or neurons)plus supporting (neuroglial) cells. Neurons are able to respond to stimuli (such as touch, sound, light, and so on), conduct impulses, and communicate with each other (and with other types of cells like muscle cells). Neurons can respond to stimuli and conduct impulses because a membrane potential is established across the cell membrane. In other words, there is an unequal distribution of ions (charged atoms) on the two sides of a nerve cell membrane. The membranes of all nerve cells have a potential difference across them, with the cell interior negative with respect to the exterior (a). In neurons, stimuli can alter this potential difference by opening sodium channels in the membrane. For example, neurotransmitters interact specifically with sodium channels (or gates). So sodium ions flow into the cell, reducing the voltage across the membrane. Once the potential difference reaches a threshold voltage, the reduced voltage causes hundreds of sodium gates in that region of the membrane to open briefly. Sodium ions flood into the cell, completely depolarizing the membrane (b). This opens more voltage-gated ion channels in the adjacent membrane, and so a wave of depolarization courses along the cell - the action potential. As the action potential nears its peak, the sodium gates close, and potassium gates open, allowing ions to flow out of the cell to restore the normal potential of the membrane. Membranes are polarized or, in other words, exhibit a RESTING MEMBRANE POTENTIAL. This means that there is an unequal distribution of ions (atoms with a positive or negative charge) on the two sides of the nerve cell membrane. This POTENTIAL generally measures about 70 millivolts (with the INSIDE of the membrane negative with respect to the outside). So, the RESTING MEMBRANE POTENTIAL is expressed as -70 mV, and the minus means that the inside is negative relative to (or compared to) the outside. It is called a RESTING potential because it occurs when a membrane is not being stimulated or conducting impulses (in other words, it's resting). Source : Internet.


When hinding of the neurotransmitters with muscle membrane receptors causes the membrane to become permeable to sodium resulting in the influx of sodium ions and what membrane?

action potential of the sarcolemma(the membrane)