answersLogoWhite

0


Best Answer

convection cell

User Avatar

Ellen Funk

Lvl 13
2y ago
This answer is:
User Avatar
More answers
User Avatar

Anonymous

Lvl 1
3y ago

A circular pattern of updrafts, downdrafts, and wind is

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
4y ago

Produced by cumulonimbus clouds when a cold front meets a warm front.

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
4y ago

Weather pattern

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is a circular pattern of updraft downdraft and winds called?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Astronomy

What is the role of downdrafts in the formation of a tornado?

Tornadoes usually form from a type of thunderstorm called a supercell, which has a rotating updraft called a mesocyclone. A downdraft at the back of the storm, called the rear-flank downdraft or RFD is believed to wrap around the tornado, tightening and intensifying it to produce a tornado.


Under conditions will the vortex of a tornado form?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


How does a tornado come at night?

Tornadoes occur at night the same way they do during the day. First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer. Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


What kind of wheater caues tornadoes?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


What conditions must exist for a tornado to form?

The formation of tornadoes is complicated. First, you need thunderstorms, then you need a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm. This separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer. Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.

Related questions

How do tornadoes develop from thunderstorms?

The process is not fully understood. But, to start off, you need a special kind of thunderstorm called a supercell. Supercells form when the speed and direction of the wind changes significantly with latitude, a condition called wind shear. This tilts thunderstorms, separating the updraft of the storm from the downdraft. This allows the updraft to intensify without the downdraft choking it off, allowing the storm to grow stronger and last longer. Usually the updraft is in the back of the storm while the downdraft is in the front. The wind shear also sets the thunderstorms rotating. The rotation is particularly present in a powerful, rotating updraft called a mesocyclone. As the bottom of the mesocyclone intensifies and pressure drops it triggers a new downdraft near the back of the storm descends and wraps around the mesocyclone, tightening and intensifying the rotation to produce a tornado.


What is the role of downdrafts in the formation of a tornado?

Tornadoes usually form from a type of thunderstorm called a supercell, which has a rotating updraft called a mesocyclone. A downdraft at the back of the storm, called the rear-flank downdraft or RFD is believed to wrap around the tornado, tightening and intensifying it to produce a tornado.


What are the wind conditions for a a tornado?

Tornadoes form during thunderstorms that occur when there is strong difference, meaning a significant difference between winds at low and high levels. The thunderstorm has updraft (upward moving air) and downdraft (downward moving air) regions. The tornado forms in a rotating part of the updraft called a mesocyclone. A downdraft wraps around the mesocyclone, causing it to tighten and intensify into a tornado.


How does a tornado start and end?

There are aspects of both that are not fully understood. For formation: First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer. Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado. For how tornadoes end, it is thought that cold air coming out of a thunderstorm (called outflow) undercuts the mesocyclone, the rotating updraft that drives the tornado. This chokes off the supply of warm air that the updraft feeds the updraft.


What is a downdraft in the wind before a tornado?

A downdraft is a downward movement of air. Tornado formation is associated with what is called a rear-flank downdraft or RFD. The RFD descends from the back of a supercell thunderstorm and wraps around the rotating part of the storm called the mesocyclone, causing the rotation to tighten and intensify to form a tornado.


What can a tornado form?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


What caused USA tornado?

he formation of tornadoes these is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


Why do tornado?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


How are tornadoes made?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


How can tornadoes be produced?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


When did tornado start?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.


How are the tornadoes made?

The formation of tornadoes is complicated.First, a condition called wind shear, in which the speed or direction of the wind changes with altitude. If the shear is strong enough it can essentially tilt a thunderstorm, this separates the updraft and downdraft of the thunderstorm, preventing them from interfering with one another. This allows the storm to become stronger and last longer.Additionally, if the wind shear is strong enough it can start the air rolling in what is called horizontal vorticity. This horizontal vorticity can then be turned vertical by a thunderstorm's updraft. When this happens, the thunderstorm may start rotating. The rotation is especially strong in an updraft called a mesocyclone. If the storm intensifies rapidly enough, a relatively warm downdraft called a rear-flank downdraft or RFD can wrap around the bottom part of the mesocyclone. This can then tighten and intensify its rotation and bring it down to the ground to produce a tornado.